

Results-Based Contracts for Rural Water Services

Results-Based Contracts for Rural Water Services

Delivering Reliability for 100 Million People by 2030

Working Paper | July 2020

Uptime is a global consortium to deliver drinking water services to millions of rural people through long-term, performance-based funding to achieve Sustainable Development Goal 6.1.

water for good.

water mission

Lead authors

Dr. Duncan McNicholl

Uptime

With support from

FundiFix

Cliff Nyaga

Jacob Katuva

UDUMA & Vergnet Hydro

Mikaël Dupuis

Thierry Barbotte

Prof. Rob Hope

University of Oxford

Dr. Alex Money

University of Oxford

Whave

Dr. Adam Harvey

Water Mission

Seth Womble

Andrew Armstrong

Lara Lambert

Mike Staub

Further acknowledgements

We extend special thanks to the GIZ Sustainable Water Policy Programme and the Osprey Foundation for support of this publication. We further wish to thank Philip Milde, Regina Rossmann, Louis Boorstin and Regis Garandeau for their helpful comments.

This study was commissioned by

On behalf of

Federal Ministry
for Economic Cooperation
and Development

of the Federal Republic of Germany

With support from

Suggested citation: McNicholl, D., Hope, R., Money, A., Lane, A., Armstrong, A., Dupuis, M., Harvey, A., Nyaga, C., Womble, S., Allen, J., Katuva, J., Barbotte, T., Lambert, L., Staub, M., Thomson, P., and Koehler, J. (2020). Results-Based Contracts for Rural Water Services. Uptime consortium, Working Paper 2. Available at: <https://www.uptimewater.org/s/Results-Based-Contracts-for-Rural-Water-Services.pdf>

Executive Summary

We explore how concessionary funding through results-based contracts for waterpoint reliability, volumetric use, and local revenue generation might enable sustainable rural water services for 100 million people by 2030. The 'Uptime framework' combines complementary and verifiable metrics to track progress towards reliable, equitable and sustainable services for all.

We assess the feasibility of this contract design using actual quarterly financial and operational data from 2,800 waterpoints that provided water for over one million people in four countries in 2019. Results show that infrastructure maintained by these service providers is functional for 94% of the time and users pay 30% of the total service cost.

The Uptime framework

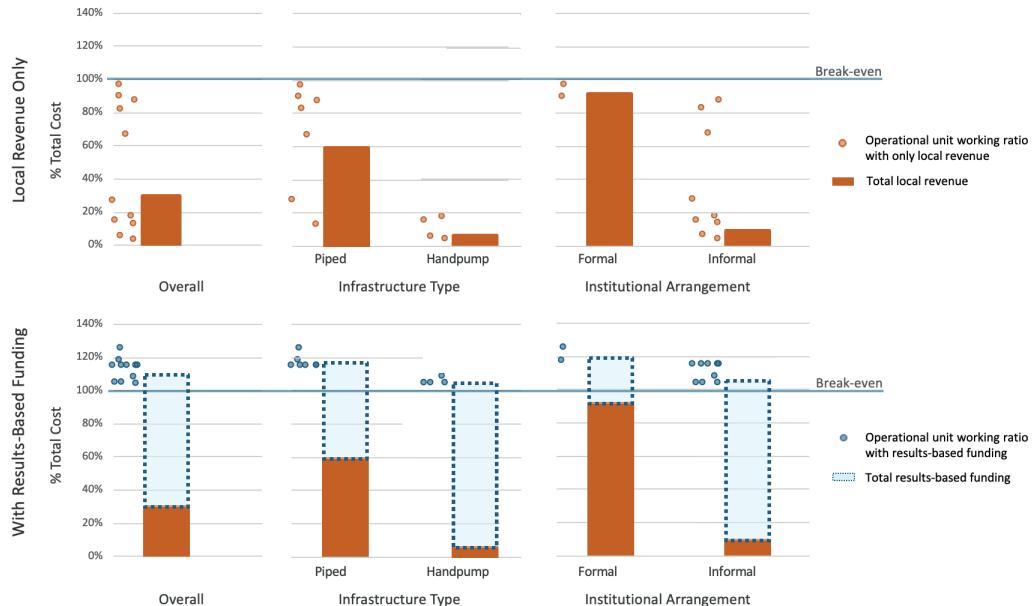
Applied to 2019 performance, the proposed results-based contracts would have funded services for c. 1.2 million people with an external subsidy of USD 876,000 or approximately USD 0.69 per person. By transferring risk from donors to service providers, service providers can be paid in arrears after results are confirmed. These grants would provide a long-term financing modality of declining and targeted subsidies as services progress towards financial sustainability.

2019 Performance

Modelled results-based funding

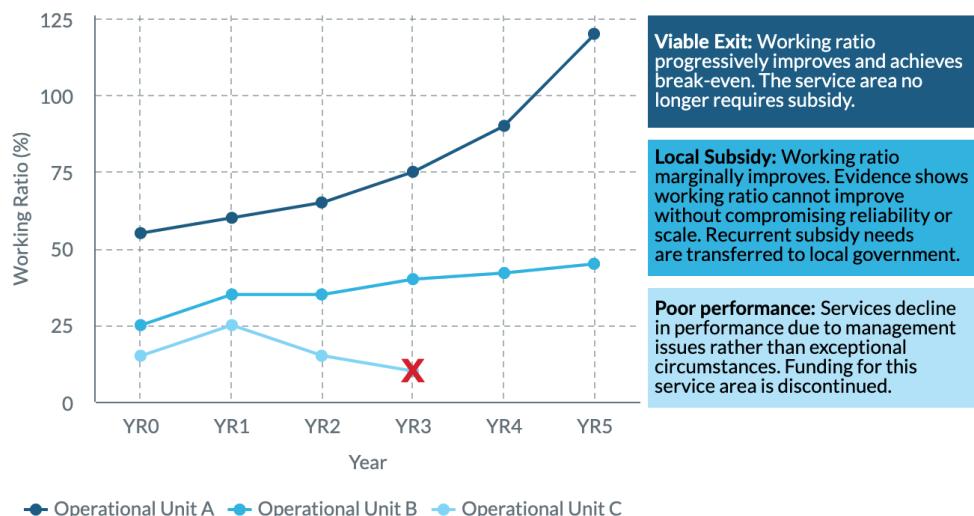
Total results-based payments

USD 875,621


Estimated payment per person served

USD 0.69

Analysis of how working ratios¹ change with the addition of results-based funding finds that the contract design can accommodate variation in the size and scope of service delivery models and by stages of development. Assuming satisfactory performance against contract requirements, results-based funding under the proposed contract design would incentivise improvements in scale and financial performance while supporting all service providers to meet operating costs (i.e. working ratio $\geq 100\%$).


¹ The proportion of direct and indirect operating costs (excluding depreciation) met by local revenue in a defined service area
See: <https://www.smithschool.ox.ac.uk/research/water/report-performance-based-funding.html>

Modelled Effect of Results-Based Funding on Working Ratios

The contract design illustrates how verifiable results can be linked to a uniform multi-country funding approach modality for services, which could address information asymmetries and unlock new resources for SDG outcomes at scale.

Multi-year results-based contracts would also accelerate progress towards ending external aid subsidies, such that pro-poor water services are increasingly financed by consumer tariffs and internal-country subsidies. Future iterations of results-based funding could progressively include water quality and affordability parameters as well as incentives to prioritize services at school and healthcare facilities.

Recommendations

Our findings point to an opportunity for non-repayable results-based funding with risk shared by service providers to improve resource allocation at scale for SDG 6.1. We argue this funding mechanism should be tested and recommend:

- 1 Pilot results-based contracts** – The proposed contract design needs to be stress tested to assess how it functions in practice and what behaviours it motivates amongst service providers.
- 2 Establish a catalyst fund** – A multi-country funding mechanism should be established for managing results-based contracts in the pilot stage with potential for future scale to 100 million people.
- 3 Develop cost-effective verification systems** – Service provider performance results need to be confirmed with data of sufficient quality.

If resources for results can be effectively and efficiently allocated at scale while motivating progress towards financial sustainability, delivering services for 100 million people could become a reality by 2030.

1.0 Delivering Reliable Services for 100 Million People

Achieving universal water services by 2030 demands rethinking the way that services are funded at scale. A graveyard of failed rural water supply infrastructure highlights the need for increased operations and maintenance funding² and transparent links between investments and results³. We consider the challenge of sustaining reliable rural services for 100 million people, which requires several conditions to be met:

- **Robust service delivery models** – Established services need to maintain high levels of infrastructure reliability, accessibility, service quality, and user satisfaction.
- **Resources to establish, scale, and optimise services** – Non-repayable funding is needed to bridge shortfalls between costs and revenues as service providers invest in developing sustainable service models.⁴
- **Results-based funding contracts** – Efficient and performance data-driven payment structures can reward high levels of service quality and continuous progress towards sustainable service models.
- **Performance tracking and verification** – Information systems need to ensure performance targets are met and that reported data are accurate.
- **Complementary institutional arrangements** – Relationships between national legal arrangements, service providers, relevant local authorities, and customers need to legitimise service mandates while enabling continuous improvements in service quality and reliability.

This paper considers the design of results-based funding contracts for rural service providers. These contracts would provide funding to service providers who deliver verified service outcomes representing social and economic returns. The funding issued would be non-repayable in cash terms, but provide social and economic returns from delivering services in rural and last-mile contexts.

2.0 Contract Design

We propose an ‘Uptime framework’ of three performance metrics as the foundation for results-based contracts (Figure 1 – Uptime framework: reliable waterpoints, water volume, and local revenue). These complementary metrics can objectively and comparatively assess and reward service performance by considering scale, multiple uses of water, and perceived user value. In combination, these metrics provide a proxy for the population reached and progress towards universally available services. The components of the Uptime framework are:

- **Reliable waterpoints** – The number of waterpoints with operational rates satisfying the need for daily water access, measured by uptime as a metric of the % days a waterpoint is operating when needed.
- **Water volume** – Independent, objective and verifiable measure of the volume of water provided using meters or sensors.
- **Local revenue** – Payment from waterpoint users as a measure of financial performance and perceived user value.

² Hutton, G., Varughese, M. (2016). The Costs of Meeting the 2030 Sustainable Development Goal Targets on Drinking Water, Sanitation, and Hygiene. World Bank and Water and Sanitation Program (WSP)

³ Andres, Luis A., et al. (2019). “Doing More with Less: Smarter Subsidies for Water Supply and Sanitation.” World Bank, Washington, DC. <https://openknowledge.worldbank.org/handle/10986/32277>

⁴ McNicholl, D., et al. (2019). *Performance-based funding for reliable rural water services in Africa*. Uptime consortium, Working Paper 1. <https://www.smithschool.ox.ac.uk/research/water/report-performance-based-funding.html>

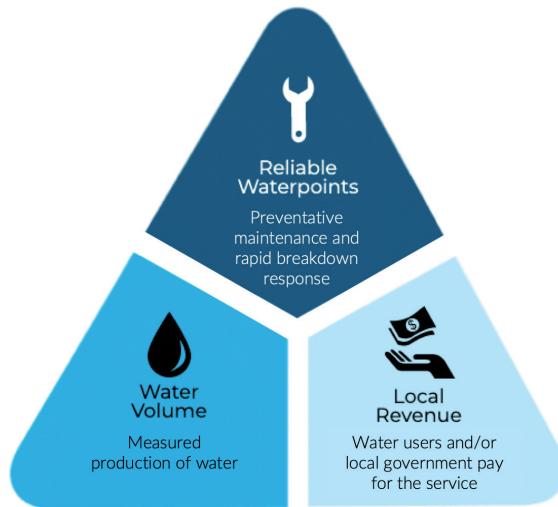


Figure 1 – Uptime framework: reliable waterpoints, water volume, and local revenue

Although the present ability to report on these metrics for each waterpoint may differ depending on the service provider and infrastructure type, these metrics collectively provide the information basis to promote and reward professionalisation in the sector and attract new forms of funding over time.

We apply the Uptime framework to a results-based contract design consisting of three parts:

- results-based payment calculation;
- maximum funding threshold; and
- sustainability criteria.

The contract would disburse non-repayable funding to service providers based on their results, assuming satisfactory performance against other contract conditions.

2.1 Results-Based Payment Calculation

Service results and corresponding payments would be assessed quarterly. Payment is a function of the Uptime framework, specifically the number of waterpoints exceeding a reliability threshold, water volume consumed, and local revenue.

Quarterly Results-Based Payment =

$$\begin{aligned}
 & a \times [\# \text{waterpoints with uptime exceeding a reliability threshold}] + \\
 & b \times [\text{volume used (m}^3\text{)}] + \\
 & c \times [\text{local revenue}]
 \end{aligned}$$

Values for 'a', 'b' and 'c' are coefficients defining the payment per unit. The additive structure of the payment formula is flexible; it could be extended to include additional components such as water quality and affordability considerations.

2.2 Maximum Funding Threshold

The proposed contract design also includes a ceiling on maximum payment to ensure that concessionary funding is proportional to actual subsidy requirements. Any resulting net income would be expected to be reinvested into the service model.

A maximum funding threshold becomes especially relevant when the quarterly payment formula creates large profit margins for services that are nearing financial viability. Results-based payments, when combined with local revenue, are limited by this threshold. The maximum potential for funding is capped as a percentage of the total direct and indirect cost of services for the quarter. Any unrealised funding potential from previous quarters would roll over to subsequent quarters within the year.

Maximum Funding Threshold =

% margin above quarterly total costs +
unrealised earnings from previous quarter

To incentivise expansion of service coverage, the maximum funding threshold could also be made to float in proportion to change in scale of services. For example, a 5% increase in the number of waterpoints maintained could correspond to a 5% increase in the maximum funding threshold. The proposed Catalyst Fund (see Section 4.3) will calibrate and test these possible adaptations to improve the contract design.

2.3 Sustainability Requirements

Finally, service providers would be required to demonstrate that they are progressing towards sustainable service models. They must meet both pre-contractual conditions and show annual progress towards improving the scale of services and financial efficiency. In the absence of exceptional circumstances, services that do not achieve year-on-year improvement in either of these aspects would be ineligible for results-based funding.

Pre-contractual conditions include:

- **Established service record** – Since the contract pays service providers after results have been confirmed, eligible service providers would need to demonstrate a multi-year track record of established rural services as a precondition for entering into a results-based funding agreement.
- **Generate revenue from users** – Service providers must show that users are making cash payments for the service, even if only a small portion of the total cost. This is a proxy to confirm that users perceive value in the service.
- **Evidence of contracts and agreements between users, service providers and government** – Agreements should be in place to confirm that the service provider has a legitimate mandate to operate. These agreements, including MOUs and service contracts, apply to both service authorities and water users.
- **Planning for infrastructure replacement** – Depending on the mandate, the responsibility for replacement of major components or complete installations might lie with the service provider or with another service authority. In either case, the service provider must provide evidence of provision being made for major component replacements and replacement of complete installations. They must justify why the approach taken is most cost-effective and sustainable for the infrastructure life-cycle.

3.0 Contract Analysis

We assess the feasibility of this contract design using multi-country service data from five providers serving over one million rural people. Analysis seeks to understand implications and incentives created by the contract design across a diversity of service providers. Specific values are first assigned to result-based contract formulas, then used to retroactively calculate payments for each 'operational unit'

managed by a service provider. Aggregate analysis then explores implications of the proposed funding model for the group of service providers as a whole.

3.1 Scope

Retroactive analysis of contract design is applied against performance of thirteen operational units managed by five service providers: FundiFix, Water for Good, Water Mission, UDUMA and Whave. In 2019, these organizations delivered services for c. 1.2 million rural people in Kenya, Uganda, the Central African Republic, and Burkina Faso. On aggregate, infrastructure was functional for 94% of the time (uptime) and water users paid 30% of the total service cost. These uptime figures substantially exceed typical sector performance⁵.

Figure 2 – Service providers included in analysis

These service providers represent a range of service models, infrastructure types, stages of service model development, and country contexts⁶. Their collective experience is further informed by service areas not included in this analysis from elsewhere in Africa, Asia, and Latin America.

3.2 Contract Values

Results-based payments are calculated using assumed values (see Appendix A):

- **Waterpoints** – USD 50/quarter for each waterpoint with a quarterly uptime >96%
- **Volume** – USD 1/m³ with a historical volume estimate for currently unmetered handpumps
- **Local revenue** – 100%: locally generated revenue is matched at a 1:1 ratio
- **Maximum funding margin** – 15% above total quarterly cost

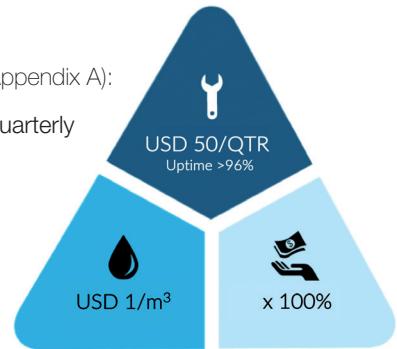


Figure 3 – Values applied to results-based contracts for analysis

3.3 Quarterly Analysis

Payment values are calculated against the performance of each service provider 'operational unit' on a quarterly basis. Results-based payments are calculated after results are reported, requiring service providers to bear implementation risk. A results-based payment determined by number of waterpoints with >96% uptime, water volume used, and local revenue is added to existing local revenue to determine total income. If total income exceeds the maximum funding threshold, the total results-based payment is reduced accordingly. The example in Figure 4 – Quarterly results-based payment calculation (see Appendix B) shows an operational unit that has exceeded the maximum funding threshold.

5 Foster, T., Furey, S., Banks, B., & Willetts, J. (2019). Functionality of handpump water supplies: a review of data from sub-Saharan Africa and the Asia-Pacific region. International Journal of Water Resources Development.

<http://doi.org/10.1080/07900627.2018.1543117>

6 McNicholl, D., et al. (2019). Performance-based funding for reliable rural water services in Africa. Uptime consortium, Working Paper 1. <https://www.smithschool.ox.ac.uk/research/water/report-performance-based-funding.html>

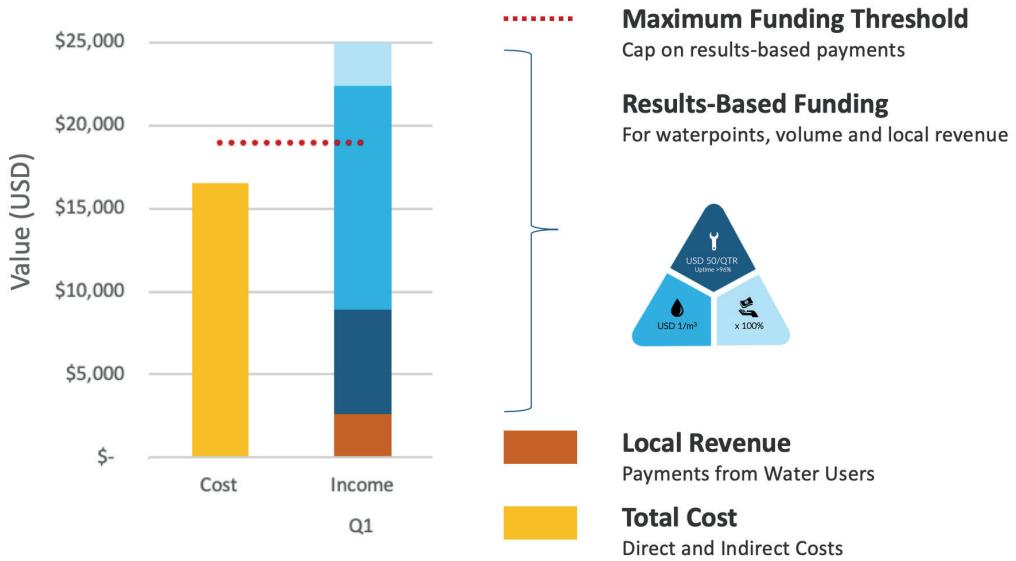


Figure 4 – Quarterly results-based payment calculation

This calculation is repeated for each service provider operational unit for each quarter in 2019. Two are presented in detail.

Case Study: Approaching Viability

The first operational unit considered is a piped service area that is nearly viable from local revenue (Figure 5 – Quarterly costs and incomes for an operational unit that is nearly financially viable). Because relatively little subsidy is needed, results-based payments are capped by the maximum funding threshold in each quarter. The largest proportion of results-based funding would have been disbursed in Q4 when rising costs would have created a greater need for external support.

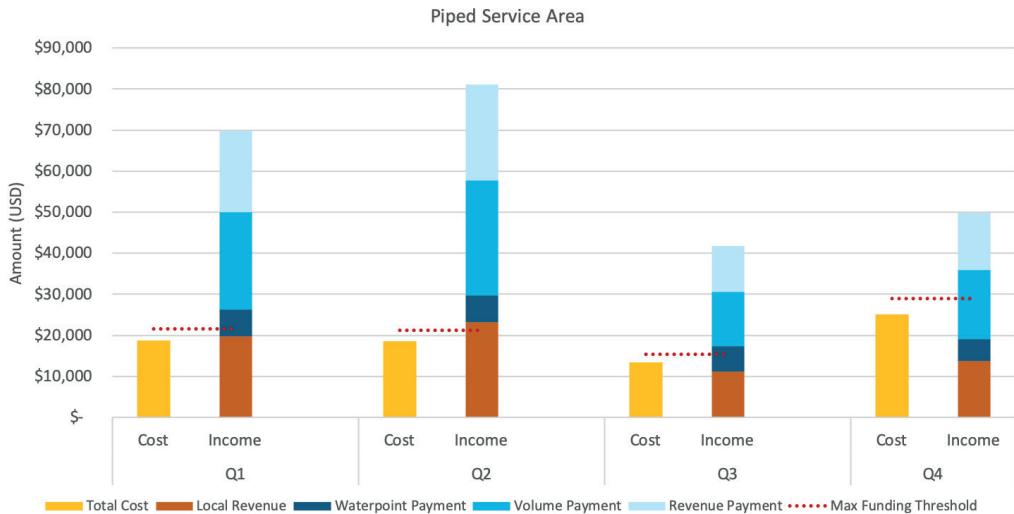


Figure 5 – Quarterly costs and incomes for an operational unit that is nearly financially viable

Changing costs and revenues reflect the seasonal nature of water services in many rural contexts and

the business risks of providing high-quality services with variable and often unpredictable demand within and between years. Fluctuations in rainfall, for example, can correspond with changes in financial flows⁷. In this case, results-based funding would provide security against fluctuations in costs and revenues that might jeopardise services at critical times. Revenues might fall during crises – precisely when services are needed most. Equally, user payments may decrease if service providers cannot quickly respond to breakdowns. Service providers face an imperative to continue incurring service costs or otherwise risk undermining the sustainability of the model and user acceptability.

The net result for the year is a total results-based payment of approximately USD 20,000 to serve a population of c. 43,000 (see Appendix C).

Case Study: Changing Scale of Services

Another operational unit serving rural handpumps shows a decrease in the number of waterpoints maintained over the year resulting in a Q4 reduction in results-based funding. (Figure 6 - Quarterly costs and incomes for an operational unit with a changing scale of services).

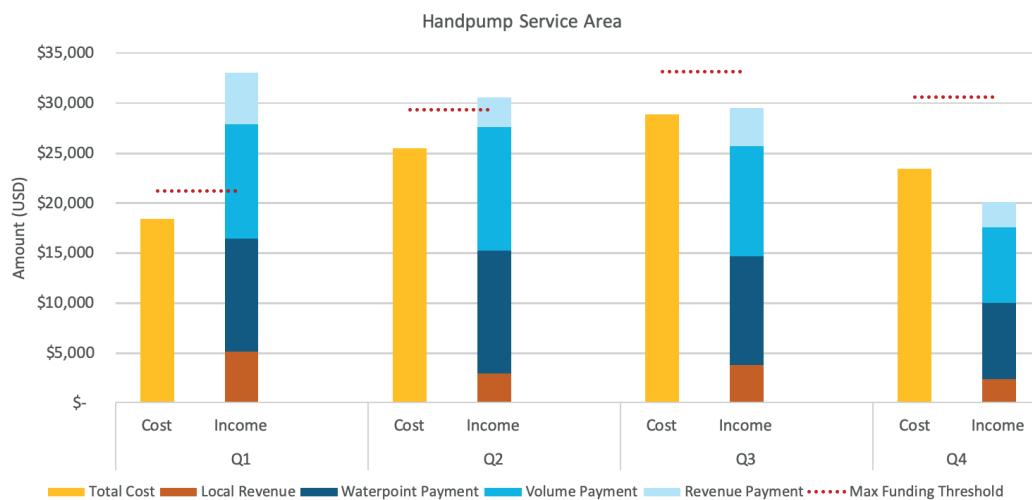


Figure 6 - Quarterly costs and incomes for an operational unit with a changing scale of services

This operational unit is able to meet its annual costs with the support of results-based funding, but it does not reach its maximum payment threshold after Q2. The contract design would therefore allow the service provider to increase income by improving performance through increasing measured volume consumption, increasing local revenues, or increasing in scale. The handpumps in this example are not metered, and volumetric use is therefore estimated (see Appendix A).

The net result for the year is a total results-based payment of approximately USD 85,000 to serve a population of c. 55,000 (see Appendix C).

3.4 Aggregate Analysis

Modelled results-based payment calculations are repeated retroactively for all operational units to consider how the contract design affects operational units across different types of infrastructure and developmental stages. Analysis assumes satisfactory performance against sustainability criteria in all cases.

⁷ Foster, T., & Hope, R. (2017). Evaluating waterpoint sustainability and access implications of revenue collection approaches in rural Kenya. Water Resources Research. <https://doi.org/10.1002/2016WR019634>

Analysis considers how each operational unit with an annual financial shortfall is affected by the inclusion of results-based funding. Working ratio, the proportion of total operating cost met by local revenue, is used to evaluate the financial performance of each service provider 'operational unit'. Figure 7 – Effect of modelled results-based funding by operational unit assuming satisfactory performance summarises the distribution of working ratios and the total proportion of costs met by local revenues, and then considers how results-based funding would have affected these values. Findings are summarised by the overall effect, as well as disaggregated by infrastructure type and the formality of institutional arrangements between service providers and local authorities as an indication of the stage of development of the service.

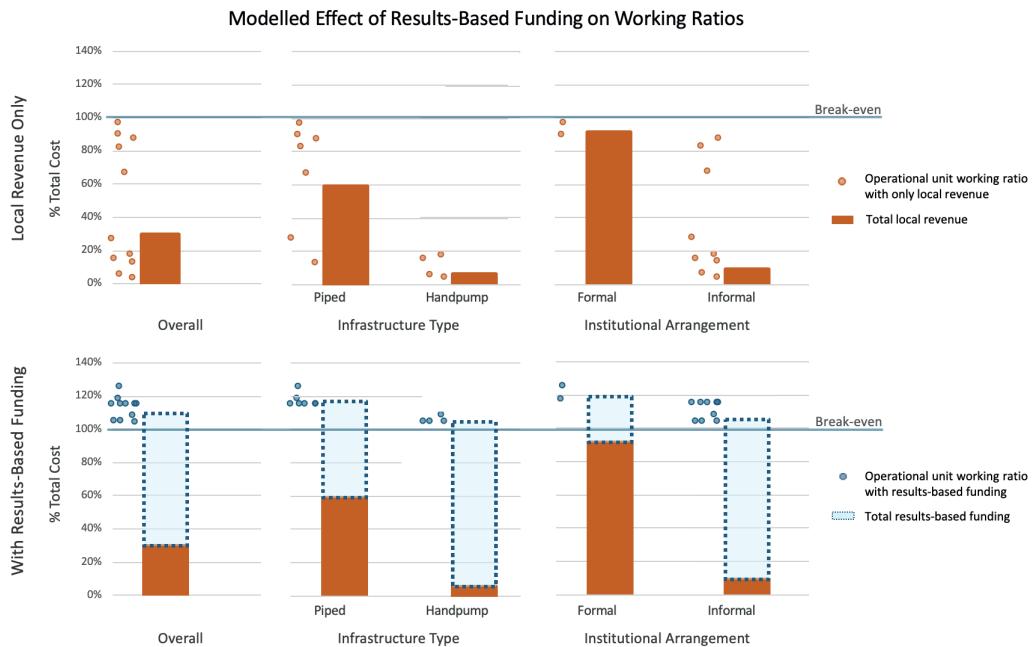


Figure 7 – Effect of modelled results-based funding by operational unit assuming satisfactory performance

Findings suggest it may be possible for a common set of contract terms to be broadly applicable for rural water services. Analysis finds that the contract structure could accommodate a variety of service models across infrastructure types and stages of service development. Assuming satisfactory performance by all services, the results-based contracts could have enabled all operational units to meet operating costs.

With results-based contracts implemented in 2019, reliable water services for c. 1.2 million people across four countries would have required a subsidy of USD 875,621, or approximately USD 0.69 per person⁸ (Figure 8 – Modelled cost of results-based funding contracts for rural water services in four countries).

⁸ Full infrastructure life-cycle subsidy requirements would need to additionally consider provision for capital replacement costs

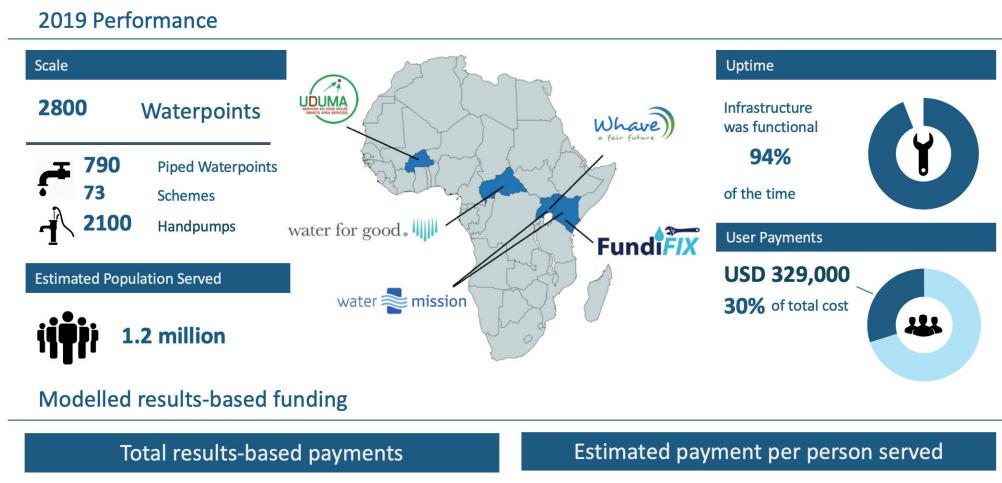


Figure 8 – Modelled cost of results-based funding contracts for rural water services in four countries

4.0 Implications for Contract Delivery

Modelling results-based funding provides insights but does not predict behaviour of service providers under proposed contract conditions. Without monitoring operational behaviour under contracts, it is not possible to determine how contract security will influence the operational behaviour anticipated in this study. We therefore recommend a catalytic phase to confirm, reject or improve the concepts and assumptions underlying the contract design. Here we consider three requirements for piloting results-based contracts: multi-year conditions for service providers, verification and the establishment of a 'catalyst fund'.

4.1 Multi-Year Conditions

Results-based funding should motivate continuous improvement of services over time. The establishment of multi-year funding conditional on results would presumably motivate three desirable behaviours: stronger focus on optimising service models, accelerated peer-to-peer learning and eventual graduation from dependence on subsidies (i.e. local service cost-recovery).

For example, we illustrate three scenarios which influence funding decisions over time (Figure 9 – Examples of how operational units might mature and eventually exit from results-based funding). Not all service models will necessarily succeed, but sustainability requirements attached to results-based funding requirements will motivate service providers to progressively minimise the need for external support. Sector learning and pre-qualification rules will improve with greater evidence as the catalyst fund generates important lessons for wider uptake.

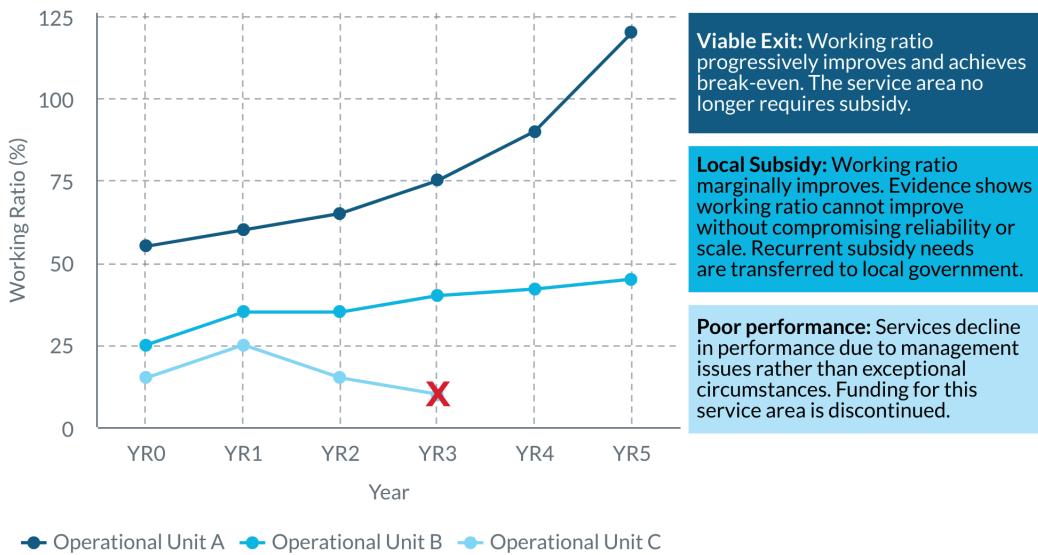


Figure 9 – Examples of how operational units might mature and eventually exit from results-based funding

We assume other stakeholders may also change behaviour in response to results-based funding. Desirable outcomes include local governments working closely with, and possibly directly funding, service providers to maximise results. The prospect of results-based funding might also attract new actors to begin offering reliable rural water maintenance services. The likelihood of these positive behaviours remains uncertain until results-based funding can be tested in practice.

4.2 Verification

Results-based contracts will need to be underpinned by verification systems to confirm figures reported by service providers. Advances in technology are expanding the feasibility of monitoring rural services at scale, although selection of appropriate methods requires optimising data quality and cost.

Applying the Uptime framework to all results-based contracts would scope the requirements of verification systems to a small number of objectively measurable metrics. For water infrastructure, verification systems would need to gather data on waterpoint locations, uptime and volume produced. If data on volumetric use are timestamped, monitoring of uptime and volume can be combined.

Technology is making volumetric monitoring increasingly feasible. Although cost and data quality need to be balanced and compared to traditional observation methods like spot checks, expanding availability of both in-situ and remote sensors is creating new opportunities for data collection. Measuring volumetric use of waterpoints is currently much more common with piped networks than handpumps, but this could change if measurement were increasingly linked to funding. Regardless of the specific technology applied, implementation of results-based contracts will require verification systems that can consistently monitor use and uptime of all infrastructure types at sufficient scale.

4.3 Establishing a Catalyst Fund

We hypothesise that long-term funding is available and can be unlocked by service providers that can verifiably and consistently deliver results aligned with the global delivery of SDG 6.1. A catalyst fund is key to testing this hypothesis.

A range of instruments are being used worldwide to provide finance that is contingent on the delivery of pre-agreed and verified results. A summary of the various results-based finance approaches is available on the Global Partnership for Results Based Approaches (GPRBA) website⁹. Results-based finance mechanisms have been increasingly used in alignment with SDG objectives; particularly to improve access to renewable energy, support low carbon transport, reduce emissions in cities and to promote gender equality.

We recommend the establishment of a catalyst fund to pilot results-based contracts. Its design combines elements of output-based disbursement (OBD) with performance-based financing (PBF). Service providers are paid for improvements in efficiency as measured by their working ratio; consistent with output-based disbursement. Additionally, payments can be made to service providers based on their performance as measured by meeting output indicators; consistent with performance-based financing.

Building on evidence from the implementation of conventional social impact bonds or pay-for-success programmes, the catalyst fund we propose would operate over multiple jurisdictions and is not dependent on a government payor. It would not require investors to take on the risk of providing service providers with upfront working capital. Instead, service providers bear the financial and operating risk of delivering against their contractual performance outcomes. Service providers are paid in arrears, and on the basis of their performance being independently verified.

If the proposed fund were successfully launched, it would enable the immediate introduction of a standardised contract with specified outcomes, at scale. Over a pilot period, data will be systematically evaluated in order to refine the process and make it scalable to rural water service providers globally. The pilot would test the viability of a scaled-up fund that could support the sustainable provision of water services to one hundred million rural people in Africa, Asia and Latin America, by 2030.

⁹ <http://www.gpoba.org/results-based-financing>

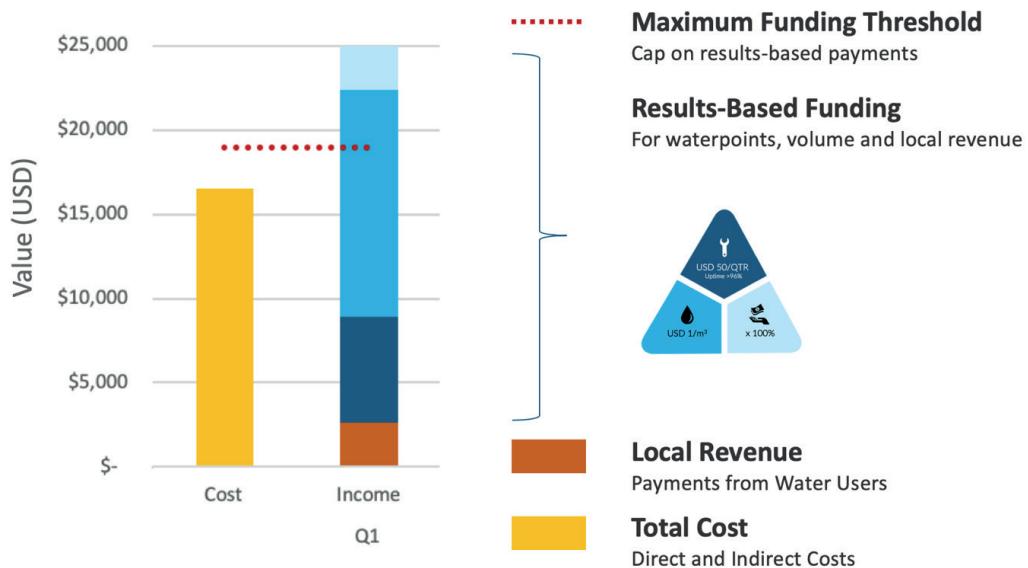
5.0 Conclusions and Recommendations

Results-based funding contracts designed around reliable waterpoints, water volume and local revenue have the potential to accommodate a range of service models and stages of development while motivating service providers to progressively improve scale and efficiency of operations. The proposed contract design is flexible to allow future incorporation of metrics such as water quality, affordability, service coverage, and broader sustainability criteria.

Analysis of performance contracts retroactively applied to 2019 performance data from five service providers finds that results-based contracts combined with local revenue could have allowed all operational units to meet operating costs. Results-based funding would have enabled reliable water services for c. 1.2 million people for one year at an external subsidy of approximately USD 875,000 or USD 0.69 per person.

Our findings point to an opportunity for non-repayable results-based funding with risk shared by service providers to improve resource allocation at scale for SDG 6.1. We argue this funding mechanism should be tested and recommend:

- 1 Pilot results-based contracts** – The proposed contract design needs to be stress tested to assess how it functions in practice and what behaviours it motivates amongst service providers.
- 2 Establish a catalyst fund** – A multi-country funding mechanism should be established for managing results-based contracts in the pilot stage with potential for future scale to 100 million people.
- 3 Develop cost-effective verification systems** – Service provider performance results need to be confirmed with data of sufficient quality.


Translating resources into transparent results has transformative potential for both optimising rural services and unlocking new funding for SDG outcomes. If results-based funding can be shown to deliver success in a diversity of contexts, scaling the approach to fund services for 100 million people could become a reality.

Appendix A: Contract Values

Unit	Unit Value	Rationale
Quarterly payment per waterpoint	USD 50/QTR	Analysis of 2018-2019 cost per waterpoint for the five service providers was approximately USD 400 for both piped waterpoints and handpumps. Payment value is set to half of this, USD 200/YR, with the expectation that the other half would be covered through payments for local revenue and volume consumption.
Reliability threshold	>96%	Reliability is measured by uptime: the proportion of time functional out of the total possible. Uptime is measured for each waterpoint on a quarterly basis. A quarterly uptime per waterpoint >96% implies that broken infrastructure is fixed in approximately 3 days or less.
Volume	USD 1/m ³	Volumetric price informed by revenues reported in urban utilities ¹⁰ .
Assumed volume for unmetered handpumps	50 m ³ /QTR	Metered handpumps within the analytical scope suggest actual use may be closer to 100 m ³ per quarter. A conservative assumption provides incentive to meter actual handpump use.
Local revenue	100%	Results-based funding matches local revenue. This creates an incentive to maximise local revenue, including from local authorities who may be more inclined to commit resources if contributions are matched.
Maximum quarterly margin	15% above total costs	The maximum margin is the percentage above total costs earned from the combination of local revenue and results-based payments. Service provider experience suggests that margins beyond 15% attract scrutiny and pressure to reduce tariffs. The maximum margin could be increased if additional surplus is needed as a provision for infrastructure life-cycle replacement.

¹⁰ World Bank (2011). Africa's Water and Sanitation Infrastructure: Access, Affordability, and Alternatives. <http://documents.worldbank.org/curated/en/712211468202191672/Africas-water-and-sanitation-infrastructure-access-affordability-and-alternatives>

Appendix B: Quarterly Results-based Payment Calculation

Service Provider Results

Total Cost USD 16,518

Number of waterpoints with uptime > 96% 126

Volume produced (m³) 13,507

Local revenue USD 2,602

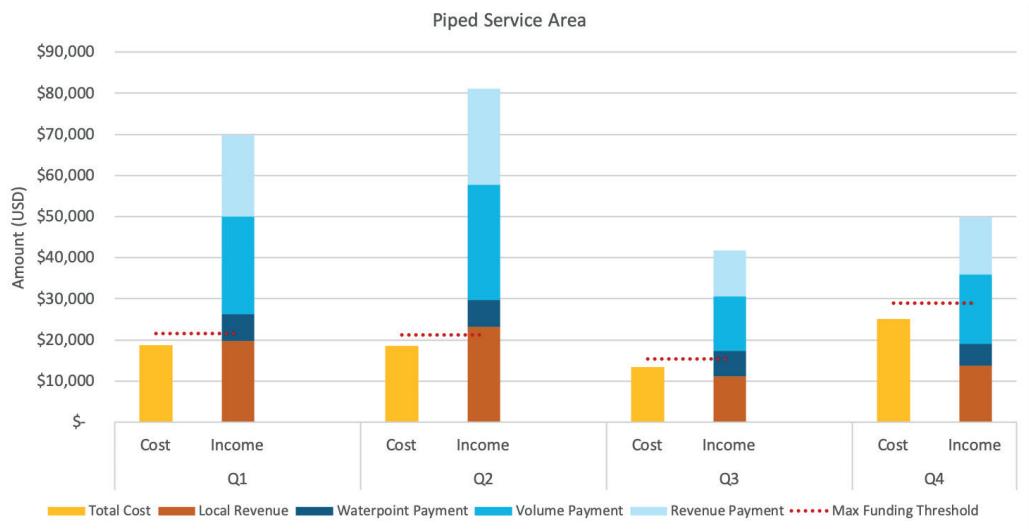
Calculated Results-based Payments

Waterpoint payment = USD 50 x number of waterpoints with uptime >96% USD 6,300

Volume payment = USD 1 x volume produced USD 13,507

Revenue payment = Local revenue x 100% USD 2,602

Maximum funding threshold = Total cost x 115% USD 18,996


Total results-based payment

Total income > Maximum funding threshold
therefore USD 16,394

Total results-based payment = Maximum funding threshold – local revenue

Appendix C: Case Studies

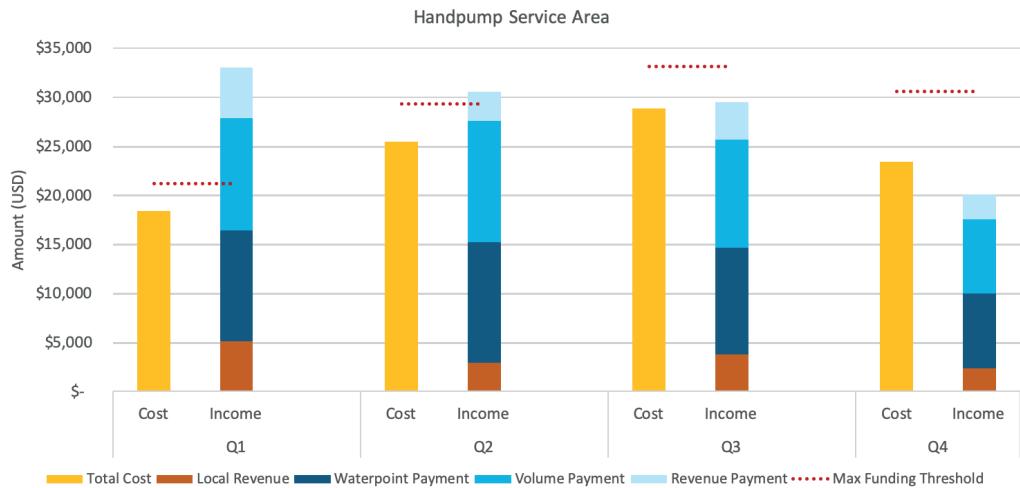
Case Study: Approaching Viability

Annual Performance Summary

Waterpoints with Uptime >96% 130

Operational Working Ratio (Local Revenue/Total Cost) 89.7%

Estimated Population Served 42,900


Modelled Results-Based Funding Summary

Total Results-Based Payments USD 21,194

Annual Net Income USD 13,387

Approx. Results-Based Payment per Person USD 0.49

Case Study: Changing Scale of Services

Annual Performance Summary

Waterpoints with Uptime >96% 246

Operational Working Ratio (Revenue/Total Cost) 15.0%

Estimated Population Served 55,900

Modelled Results-Based Funding Summary

Total Results-Based Payments USD 85,660

Net Income USD 3,923

Approx. Results-Based Payment per Person USD 1.53

This study was commissioned by
Deutsche Gesellschaft für
Internationale Zusammenarbeit (GIZ) GmbH
Registered offices
Bonn and Eschborn
Dag-Hammarskjöld- Weg 1-5
65760 Eschborn, Germany
T +49 61 96 79-0
F +49 61 96 79-11 15
E info@giz.de
www.giz.de
On behalf of
German Federal Ministry for Economic Cooperation and Development (BMZ)
GIZ is not responsible for the content of this publication.

URL links:

This publication contains links to external websites. Responsibility for the content of the listed external sites always lies with their respective publishers.
When the links to these sites were first posted, GIZ checked the third-party content to establish whether it could give rise to civil or criminal liability.
However, the constant review of the links to external sites cannot reasonably be expected without concrete indication of a violation of rights. If GIZ itself becomes aware or is notified by a third party that an external site it has provided a link to gives rise to civil or criminal liability, it will remove the link to this site immediately.
GIZ expressly dissociates itself from such content.

In partnership with

— UPTIME —

Uptime is a global consortium to deliver drinking water services to millions of rural people through long-term, performance-based funding to achieve Sustainable Development Goal 6.1.

FundiFIX

water for good.

Whave
a fair future

water mission

