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INTRODUCTION

Cet ouvrage est une version revue et augmentée d’un premier livre, “Hydrogéologie Quantitative”, paru
chez Masson en 1981.

C’est un livre d’enseignement, mais aussi un livre de base pour le praticien qui souhaite retrouver
certaines expressions classiques, certaines valeurs usuelles de parametres, ou aborder certains phénomeénes
un peu inusuels du domaine.

L’accent est mis sur I'estimation: ’hydrogéologie est une discipline oli tout se produit, par définition, a
abri du regard, dans les anfractuosités du milieu souterrain. Ce que 'on demande a I’hydrogéologue, c’est
donc d’abord d’expliquer ce qui se passe dans le sous-sol, puis d’en déduire une estimation d’une ou plusieurs
grandeurs intéressant le citoyen ou le scientifique: une réserve, une hauteur d’eau, une concentration, un
temps de transfert, par exemple.

Cette estimation sera basée en général sur une description de la géométrie des corps solides souterrains
par ol transite Pécoulement, suivie d’une caractérisation directe ou indirecte des propriétés de ces corps, le
plus souvent & partir d’essais locaux, et complétée enfin par un calcul prédictif.

Ces trois étapes ne peuvent en général étre totalement dissociées et allient des connaissances dérivant
de la géologie, dans bon nombre de ses composantes (sédimentologie, stratigraphie, tectonique, géochimie,
géophysique) et de I'hydraulique.

Une part importante de I’ouvrage s’adresse au probleme de I’hétérogénéité des milieux souterrains, et
propose, pour la quantifier, 'emploi des approches stochastiques. Le principal avantage de ces méthodes
est de pouvoir associer a I’estimation proposée une mesure de son incertitude, et donc de mettre en garde
'utilisateur des résultats sur I'apparente précision d’une prédiction quand elle n’est accompagnée d’aucune
fourchette d’incertitude.

Par ailleurs, les problemes du transport des éléments solubles ou en phase séparée non miscible, qui
revét une importance qui va croissant du fait de la lente contamination de ’environnement par les activités
humaines, occupe une large place dans cet ouvrage.

Une large part de ouvrage est issue du travail de mes collaborateurs, collegues et thésards, a I'Université
Paris VI et 4 I’Ecole des Mines de Paris: qu'’ils en soient ici remerciés.
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Chapitre 1

LE CYCLE DE L’EAU

1.1. Humidification et infiltration 1.4. Cas de la neige

1.2. Ruissellement de surface 1.5. Schématisation du cycle de I'eau

1.3. Evaporation 1.6. Différentes branches de I’hydrologie
1.3.1. Estimation 1.7 Autres origines possibles des eaux
1.3.2. Mesure souterraines

Les précipitations (pluies et neiges) arrivant a la surface de la terre constituent la quasi-totalité des

apports d’eau au sol. Nous étudierons séparément le cas de la pluie et de la neige, puis regarderons les autres
types d’apports.

Quand une pluie arrive au sol, trois processus prennent naissance:
- T’humidification du sol et Vinfiltration,
- le ruissellement de surface,
- Dévaporation.

Nous regarderons comment on peut tenter d’estimer ces différents flux.

1.1. HUMIDIFICATION ET INFILTRATION

Dans la quasi-totalité des pays ou il pleut, le sous-sol renferme en temps normal de I’eau. Un profil
habituel de la quantité d’eau contenue en fonction de la cote se présente de la fagon suivante:

cote Z

0 surface du sol

zone non saturée
N surface de la nappe

zone saturée

teneur en eau

Cette teneur en eau est, bien siir, fonction de la porosité et de la perméabilité du sol. En dessous d’une
certaine cote, N, la teneur en eau n’augmente plus avec la profondeur. Le sol est dit saturé, tous les vides

(les pores) du sol contiennent de I’eau. Cette eau est dite appartenir & la nappe phréatique. Nous définirons
plus précisément le terme au Chap. 6.

En revanche, au-dessus de la cote N, le sol est dit non saturé, les vides du sol contiennent simultanément
de ’eau et de ’air. Nous étudierons au Chap. 2 suivant quelle relation.



2 Le cycle de l’eau

Disons seulement que 'eau est soumise essentiellement aux forces de gravité dans la zone saturée et, en
plus, aux forces de capillarité (qui deviennent trés vite prépondérantes) dans la zone non saturée.

L’eau qui tombe & la surface du sol commence par humidifier la fraction supérieure du sol (quelques
centimétres). Le profil est alors le suivant:

r4
surface du sol

surface de la nappe

[N —————

teneur en eau

Cette augmentation d’humidité en surface n’entraine pas nécessairement un écoulement vertical immé-
diat: tant que les forces de capillarité sont supérieures aux forces de gravité, 'eau est retenue, comme dans
une éponge, et ne migre vers le bas que tres lentement.

Quand la teneur en eau dépasse une valeur limite, appelée capacité de rétention spécifique, 'eau se
propage plus rapidement vers le bas et humidifie une zone plus profonde du sol.

Si la pluie se poursuit suffisamment longtemps, Phumidification sera de plus en plus importante et
entrainera une infiltration, c’est-a-dire une arrivée d’eau a la nappe. Mais ce phénomeéne est trés lent:
suivant la profondeur de la nappe sous le sol et la perméabilité de celui-ci, 'arrivée d’eau a la nappe peut se
produire dans la semaine qui suit la pluie, dans le mois, ou méme dans les six mois.

En zone tempérée, une grossiere estimation moyenne de la lame d’eau infiltrée jusqu’a la nappe est
d’environ 300 mm/an, soit 10 £/s.km?.

1.2. RUISSELLEMENT DE SURFACE

Si lintensité de la pluie est forte, le sol ne peut ingurgiter 'apport d’eau: passés les premiers instants
et ’humidification de la zone tout & fait supérieure du sol, un excés d’eau apparait en surface:

4 pellicule d'eau

surface du sol

\ teneur en eaw

La tranche supérieure du sol est saturée sur une faible épaisseur, mais cette humidité ne se propage pas
assez vite pour absorber toute I’eau qui tombe.

Sur certains sols nus, pauvres en matiéres organiques, ce phénomene est renforcé par I’apparition d'une
“croiite de battance”, qui est un colmatage d’une fine pellicule superficielle du sol due & I'impact des gouttes

de pluie qui arrachent de fines particules solides et les redistribuent dans les pores du sol, diminuant ainsi
trés fortement Dinfiltrabilité.
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Une pellicule d’eau de surface peut alors circuler sur le sol, c’est ce que I’on appelle le ruissellement. On
distingue méme, un peu artificiellement, un ruissellement pur en surface et un “écoulement hypodermique”,
qui se fait dans les premiers centimétres du sol ou de la végétation.

Ce ruissellement circule suivant la ligne de plus grande pente du sol et vient alimenter le réseau de
drainage naturel: fossés, ruisseaux, riviéres, etc...1l entraine des particules solides par érosion, ce qui génere
le transport solide des rivieres.

Maintenant, si la surface du sol est totalement imperméable (zone urbaine ou roche de surface imper-
méable, par exemple, roche compacte non fissurée bien que cela soit rare, ou encore zone gelée), le ruis-

sellement apparait presqu’instantanément aprés que I’eau ait comblé les premiéres aspérités du sol (flaques,
etc...).

Dans les bas-fonds des vallées humides, il peut aussi arriver que le sol soit saturé jusqu’a la surface: la
surface de la nappe phréatique affleure et un suintement d’eau s’effectue vers la riviere centrale. Dans ce
cas, la pluie ne peut pas non plus s’infiltrer et alimente directement le ruissellement. Si emprise au sol de
cette zone ol la nappe phréatique affleure varie au cours de I’année avec le régime des précipitations, on
parle d’aire contributive au ruissellement variable. Voir par exemple Beven et al. (1985).

Notons enfin que la végétation constitue encore un premier écran aux mécanismes cités plus haut: le
début de la pluie est intercepté par les arbres, les herbes, ce qui peut empécher une faible pluie de commencer
tout mécanisme d’humidification. En revanche, la végétation empéche le développement d’une croite de
battance, et protége le sol contre 1’érosion.

1.3. EVAPORATION

Méme pendant la pluie, une partie non négligeable de I’eau arrivée au sol est immédiatement réévaporée.
En effet, 'humidité de ’'atmosphére est rarement saturée, méme pendant un orage.

Une fois la pluie arrétée, cette évaporation continue et asséche peu a peu l'eau qui se trouve interceptée
par la végétation, ou qui reste en surface. Elle continue, bien sur, sur les surfaces d’eau libre (riviéres, lacs)
et & la surface du sol. '

Dans le sol méme, cette évaporation continue également. Du fait de I'existence d’une phase air dans
la zone non saturée, cette étaporation pourrait avoir lieu simultanément sur la totalité du profil et méme
presque jusqu’a la nappe. Cependant, du fait de la lenteur des mécanismes d’extraction de cette humidité
dans la phase air (diffusion vers la surface), c’est I'évaporation a la surface du sol qui est le phénoméne
dominant quand le sol n’est pas trés desséché, en climat tempéré. L’eau du sol est comme “aspirée” et
remonte vers la surface par capillarité pour y étre évaporée.

La facilité pour I’atmosphére d’évaporer 'eau du sol diminue avec la teneur en eau de celui-ci: plus
celle-ci est faible, plus I’eau est liée par capillarité au sol, et plus I’énergie a fournir pour l'en extraire est
glevée. Elle est également fonction du pouvoir évaporant de I’atmosphere: température, vent, ensoleillement.

En été, quand cette évaporation est intense, elle reprend généralement la totalité de I'eau qui a humidifié
le profil: il ne se produit pas d’infiltration a la nappe. La P1.1 donne une succession de profils de teneur en
eau caractéristiques dans un sol, en hiver et en été, mettant en évidence la différence de comportement.

On admet cependant que la reprise évaporatoire sur la nappe devient négligeable, méme en pays tropical
ou aride, quand celle-ci se trouve a plus de 10 ou 15 m sous la surface du sol.

En pays aride, sur sol nu, on a pu montrer que l’extraction de 'eau du sol et ’évaporation se font de la
maniére suivante: remontée de ’eau sous forme liquide par capillarité jusqu’a une profondeur de 1,5 m sous
la surface environ; vaporisation de I’eau et changement de phase a cette profondeur; diffusion de I’eau-vapeur
dans ’air du sol jusqu’a la surface et dans ’atmosphére. En utilisant des méthodes isotopiques, Fontes et
al. (1986) ont pu ainsi estimer le flux évaporatoire au Sahara, a Beni-Aloés, & environ 5 mm/an, quand la
nappe se situe 3 10 m de profondeur sous le sol.
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ETE . _HIVER
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Pl.1 - Modification du profil d’humidité d’un sol aprés la pluie.



Le cycle de l’eau 5

Un autre phénomene joue dans le méme sens que I'évaporation sur le sol: c’est la transpiration des
végétaux. Les racines des plantes sont capables de reprendre '’eau du sol dans la zone non saturée, ou
parfois dans la zone saturée si elle proche.

1.3.1. Estimation

Cette transpiration réduit donc peu a peu la teneur en eau du profil. Au-dessous d’une certaine teneur
en eau limite, les plantes ne sont plus capables d’extraire de I’eau du sol: c’est le point de flétrissement,
qui varie d’une espéce a autre. On I'exprime généralement, non pas en teneur en eau, mais en succion ou
tension en bars (voir plus loin I’étude de la zone non saturée, Chap.2).

On regroupe généralement évaporation et transpiration sous le terme “évapotranspiration”, sans dis-
tinguer les deux phénomeénes, et c’est ce terme que l'on tente, avec difficulte, d’estimer ou de mesurer. Il
existe pour cela des formules empiriques qui sont basées sur des mesures climatologiques (température, en-
soleillement, vitesse du vent, etc...- voir la référence Brochet et Gerbier, 1974). Nous donnons en Annexe
1, a titre d’exemple, les formules de Thornthwaite, de Turc, de Penman.

On estime ainsi une évapotranspiration potentielle mensuelle (notée ETP) représentant le pouvoir éva-
porant de I'atmosphére, qui serait celle que I'on observerait sur un sol avec couvert végétal, ou I’eau serait
disponible en abondance. Si 'eau vient & manquer, ’évapotranspiration réelle (notée ETR) est fonction de
ETP et de la quantité d’eau disponible.

En premiére approximation, on imagine que la tranche supérieure du sol (le premier metre, pour fixer
les idées) constitue un réservoir, la Réserve Utile du sol (RU) dont on estime la capacité maximale (100
mm trés généralement en climat tempéré, et jusqu’a 300 mm en pays aride: on appelle en général RFU
(Réserve Facilement Utilisable) cette capacité maximale). Dans ce réservoir, I’évapotranspiration peut puiser
sans restriction au taux potentiel ETP. Quand il est vide, seules les précipitations du mois donné peuvent
alimenter I’évapotranspiration.

Quand il est plein, excédent de précipitation engendre l'infiltration vers la nappe. Pendant un mois
donné, on fait le bilan de la pluie nette (en enlevant le ruissellement), d’ETP et du stock contenu dans RU,
ce qui permet de calculer ETR et l'infiltration a la nappe.

L 4
Le tableau ci-dessous en donne un exemple, pour la région de Camlibel (Turquie) en utilisant la formule
de Thornthwaite pour calculer ETP pour une année donnée:

Jan Fév Mars Avr Mai Juin Juil Aott Sept Oct Nov Déc Annuel
Temps moyen °c 6 8,2 13,1 18,3 23,1 27,6 29 29,9 26,7 21 14,7 8,7 18,9
ETP mm ’ 5,2 9,6 30,8 65,8 118,3 171,5 189,5 190,6 133,2 75,4 31,4 10,5 1031,8
Pluie mm 49,9 38,1 48,7 479 58,3 38,1 8,7 5,7 17,6 28,4 36,4 51,1 428,9
RU mm 90 100 100 82,1 22,1 - - - - - 5 45,6
Infilt. mm - 18,5 17,9 - - - - - - - - - 36,4
ETR mm 5,2 9,6 30,8 65,8 118,3 60,2 8,7 5,7 17,6 28,4 31,4 10,5 392,2

On peut donc estimer, en premiére approximation, linfiltration a 37 mm/an, et I’évapotranspiration
réelle 3 392 mm/an.

1.3.2. Mesure
Il existe également des méthodes directes de mesure de I’évapotranspiration sur une parcelle de sol a

partir de la mesure du bilan d’énergie du sol (flux radiatifs, convectifs et conductifs). On convertit en masse
d’eau le terme de chaleur latente d'évaporation que donne le bilan. Voir en particulier Choisnel (1977). Mais
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cétte méthode est onéreuse et ne s’applique pour linstant qu’a de trés petites surfaces, de I'ordre du m?2. 1l
existe des projets d’en étendre le champ d’utilisation grace a la télédétection. Voir Seguin (1980).

Une méthode plus traditionnelle de mesure est le lysimétre. Il s’agit d’un gros cylindre vertical (diamétre
1 &4 2 m, hauteur 2 4 4 m pour fixer les idées) isolé a I'intérieur du sol. En général, le sol est excavé, le
cylindre en métal ou en béton mis en place, puis le sol remis a 'intérieur et recompacté a la densité initiale.
Parfois, le cylindre de sol est laissé en place, seul ’annulaire étant excavé, le mur en béton est coulé en
préservant le sol en place. A la base du cylindre, un fond étanche permet de recueillir I’eau infilt’ée par un
systeme de drainage. Dans certains lysimetres, le cylindre entier est posé sur le plateau d’une balance, et
permet de suivre a tout instant la variation de poids du sol par gain ou perte d’humidité. .Le sol est en
général revégétalisé en surface.

Bien qu'’ils fournissent des renseignements intéressants, les lysimetres ne sont pas des instruments précis:
il existe effectivement des effets de paroi avec infiltration préférentielle, surtout si le sol se rétracte en
desseéchant; de plus, le fond étanche du lysimétre introduit une discontinuité de pression dans le sol, et
engendre l'existence d’un plan artificiel a pression nulle qui n’existe pas dans la nature (voir Chap. 2, le
profil de pression dans un sol).

Quand la nappe phréatique n’est pas trop profonde, I’existence d’une évapotranspiration plus intense
au voisinage de la surface du sol entraine un écoulement ascendant de la nappe vers la surface: la diminution
de la teneur en eau en surface entraine I’apparition de forces de capillarité tres élevées, qui engendrent une
remontée de I’eau, suivant le méme principe que I’ascension de ’eau dans un tube capillaire (loi de Jurin).
Nous étudierons ceci dans le Chapitre 2 consacré a la zone non saturée.

On congoit donc que ’évapotranspiration est un phénomene trés important. En effet, si ’on tente un
bilan global du cycle de I’eau sur la planéte, on arrive aux chiffres moyens suivants:

- lame d’eau tombée sur la terre ferme: 720 mm
- évapotranspiration: 410 mm (57 %)
- écoulements superficiels et souterrains vers les océans: 310 mm (43 %)
- évaporation directe sur les océans: 1250 mm
- lame d’eau tombée sur les océans: 1120 mm

Le bilan est pratiquement bouclé en admettant que les océans occupent 70 % de la surface du sol, et la
terre ferme 30 %:

- exces de précipitation sur la terre par rapport a

Pévaporation ... 310x0,3=93
- déficit de précipitation sur les océans par rapport
alévaporation......................lll. 130x0,7=91

Ces données sont extraites du “Bilan énergétique de la surface terrestre” de Budiko et al., Akad. Nauk.
USRR, IzV. Ser. Géogt, n°1, 1962.

L’eau infiltrée jusqu’a la nappe et qui circule dans les aquiferes (dont I’étude sera I’objet essentiel de
cet ouvrage) s’écoule et se retrouve en définitive dans les rivieres qu’elle alimente en I'absence de pluie: cet
apport du milieu souterrain aux écoulements superficiels s’appelle le débit de base, par opposition au débit
de crue qui comporte une part de ruissellement superficiel.

C’est pour cette raison que les ingénieurs s’occupant d’hydrologie de surface appellent souvent Pévapo-
transpiration réelle le “déficit d’écoulement”: c’est en effet la part des précipitations qui ne se retrouve en
définitive pas dans la riviére.

Malgré la grande variabilité de la pluie avec la localisation géographique, ’altitude, ’année, etc...,
et la grande variabilité des mécanismes de ruissellement, d’infiltration, d’évapotranspiration, ce déficit
d’écoulement varie curieusement assez peu: il est, en France, en moyenne de l'ordre de 470 mm par an.

Le mécanisme d’infiltration et d’évapotranspiration sur un profil de sol est illustré sur la Planche 1.
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1.4. CAS DE LA NEIGE

Les précipitations tombées sous forme de neige ont un sort voisin de celui de la pluie, mais différé.
- Initialement, humidification, infiltration et ruissellement sont nuls.
- L’évaporation a lieu sous forme de sublimation de la neige.

- Lors de la fonte, I'infiltration et le ruissellement prennent naissance. Le taux d’infiltration est générale-
ment plus élevé, car Papport d’eau au sol est plus lent que lors d’une pluie. Cependant, si le sol est gelé
en profondeur (cas des pays froids), une grande partie de I’eau ruisselle, et peut entrainer avec elle une
couche de sol saturé au-dessus du niveau gelé (coulée de boue).

1.5. SCHEMATISATION DU CYCLE DE L’EAU

La Planche 2 résume schématiquement les éléments du cycle de I’eau que nous avons décrit ci-dessus.
Elle est inspirée d’Eagleson (1970). Ajoutons-y quelques chiffres:

- Statistiques: Estimation des volumes d’eau disponibles dans le monde

- Océans: 1320  millions de km3 97,20 %
- Neiges et glaces: 30 7 7 ” 2,15 %
- Eaux souterraines a moins de 800 m: 4 7 ? 7 0,31 %
- FEaux souterraines & plus de 800 m: 4 ? ” 7 031 %
- Zone non saturée: 0,07 ” ” 0,005 %
- Lacs en eau douce: 0,12 > ” ” 0,009 %
- Lacs eau salée: 0,10 ”» ? 7 0,008 %
- Riviéres: 0,001 ~» 7 ” 0,0001 %
- Atmosphére: 0,013 ”» 7 ” 0,001 %

- Dynamigques: Le volume total mondial des précipitations annuelles peut étre estimé a 0,5 million de km3,
soit environ 0,04 % du volume d’eau du globe, ou encore 40 fois le volume de vapeur d’eau dans I'atmosphere.
Cela implique un renouvellement trés rapide de cette humidité atmosphérique: en moyenne, le “temps de
résidence” de la vapeur d’eau dans ’atmosphére n’est que de 9 jours.

1.6. LES DIFFERENTES BRANCHES DE L’HYDROLOGIE

L’étude du cycle de ’eau, ou hydrologie au sens large, est habituellement divisée en trois disciplines
distinctes: la météorologie, I’hydrologie de surface et I’hydrogéologie. On trouvera dans la 2€M€ partie de la
bibliographie (“Documents de base & consulter”) quelques références utiles a consulter dans chacune de ces
disciplines.

La météorologie ou climatologie occupe la premiére place dans I'étude du cycle de I'eau. Elle comporte
plusieurs volets: '
- composition et circulation générale de 'atmosphere,
- bilan énergétique de I'atmospheére,
- précipitation, pluie et neige, fonte des neiges, pluies artificielles,
- évaporation et évapotranspiration.

La tendance actuelle est de construire des modéles généraux de circulation atmosphérique, capables
de prédire les champs de pression, de vitesse, de température et d’humidité de Iair, ainsi que les précip-
itations. De tels modeles fonctionnent de facon prédictive, soit & 1'’échelle de quelques jours (prédictions
météorologiques), soit a 1'échelle de plusieurs années ou décennies, pour tenter d’estimer I’évolution du
climat, sous l'influence des gaz & effet de serre, par exemple.

La nature aléatoire du climat engendre une grande variabilité, & diverses échelles de temps et d’espace,
des précipitations qui forment le premier maillon du cycle de I’eau. Ces précipitations sont donc étudiées
sous I’angle statistique, et cette facon de voir se retrouve sur les maillons suivants du cycle.
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L’hydrologie de surface s’intéresse aux écoulements dans le réseau hydrographique. On peut lui fixer
plusieurs objectifs:

Pévaluation des ressources disponibles soit en régime naturel, soit aprés un aménagement (barrage)
et le calcul du volume de retenue nécessaire pour assurer un débit donné;

- la prévision des risques de crue et des ouvrages nécessaires pour les combattre (réseau de drainage,
barrage écréteur). Bien souvent, un ouvrage (barrage) doit répondre a plusieurs objectifs simultanés
et contradictoires: une retenue devant assurer une régularisation des crues doit étre vidée le plus
vite possible, ce qui est 'objectif opposé d’une retenue devant augmenter un débit d’étiage. D’ou
de difficiles problemes de gestion des ouvrages a buts multiples.

Deux méthodes sont couramment utilisées en hydrologie:

la méthode stochastique: les débits des riviéres, & cause de la variabilité des pluies, sont étudiés
comme des variables aléatoires;

la méthode déterministe: le processus de ruissellement et d’infiltration est étudié sous l’angle
physique déterministe (équations du mouvement) & partir d’'une impulsion supposée connue: la
pluie, sur laquelle est concentrée toute la variabilité.

Le bassin peut étre représenté comme une boite noire que I’on étudie suivant la théorie des systémes:

entrée boite sortie
A noire o
(pluie) (débit)

Au contraire, on peut étudier le bassin hydrographique sous I’angle physique, en tenant compte de
P’ensemble des parameétres physiographiques du milieu.

L’hydrologie souterraine ou hydrogéologie fera 'objet essentiel de cet ouvrage.

1.7. AUTRES ORIGINES POSSIBLES DES EAUX SOUTERRAINES

On appelle “eaux vadoses” les eaux souterraines dont P'origine provient du cycle de I’eau décrit ci-dessus.
1l existe cependant d’autres mécanismes d’apport d’eau dans les sols que celui cité jusqu’ici:

a) Condensation de la valeur d’eau atmosphérique dans les vides du sol (I’équivalent de la rosée matinale

en surface). Ce phénomeéne peut ne pas étre négligeable et est généralement désigné sous le terme de
“précipitations occultes”.

Dans P’ancien temps, on rapporte que la ville de Theodosia, en Crimée, était alimentée en eau par de
grands empilements de cailloux reliés a sept fontaines.

Des expériences conduites & Montpellier ont donné (d’aprés Geze) un débit de 2 £/jour pour un empile-
ment de 5 m® de cailloux:
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Ces eaux sont encore des eaux vadoses.

b) Eaux juvéniles: Ce sont des eaux d’origine profonde. Un magma granitique en se refroidissant expulse un
petit volume d’eau.

Ainsi, on a calculé qu’un magma de 1000 m d’épaisseur, contenant 5 % d’eau en poids, engendre un débit
de l'ordre de 25 ¢/mn/km? pendant quelques milliers & des dizaines de milliers d’années. Il faut comparer

ce chiffre aux 10 £/s.km? (infiltration moyenne en France des eaux vadoses), soit environ 4%, ce qui est en
général négligeable.

c) Eaux fossiles: Ce sont des eaux vadoses datant d’une période plus humide du Quaternaire. L’exemple le
plus proche est le Sahara, ol I’actuel climat désertique s’est mis en place depuis 5.000 ans environ.

Un autre cas d’eaux fossiles sont les “eaux connées”, généralement salées, qui datent de 1’époque de
formation des sédiments.

d) Eaux géothermales: Ce sont, trés généralement, des eaux vadoses qui suivent un cheminement compliqué,
se réchauffant en profondeur et remontant a la surface.

e) Eaux minérales: Ce sont aussi des eaux vadoses, parfois chargées en gaz carbonique d’origine magmatique,
qui ont un trajet relativement long entre les aires d’alimentation et les sources ou captages servant d’exutoires.
Mais ’appellation “eaux minérales” est accordée en France par I’Académie de Médecine, a partir de I’analyse
chimique de la minéralisation contenue et des éventuels aspects thérapeutiques de cette minéralisation.



Chapitre 2

POROSITE DES ROCHES
RELATION FLUIDE-SOLIDE EN MILIEU POREUX

2.1. Porosité totale 2.2.2. Milieux non saturés

2.2. Relations fluides-solides dans les 2.3. Mesure de la porosité
milieux poreux 2.4. Mesure de la pression de ’eau dans
2.2.1. Milieux saturés en eau le sol

La plupart des roches et des sols contiennent naturellement un certain pourcentage de vides qui peuvent
étre occupés par de I’eau ou des fluides. C’est ce que I’on appelle leur porosité. 1l faut tout de suite distinguer
Pezistence de ces vides avec leur interconnerion permettant a un fluide d’y circuler: nous étudierons cette
deuxiéme propriété, la perméabilité, au chapitre 4. Disons que la porosité est une condition nécessaire, non
suffisante, de la perméabilité.

Dans I’étude de la porosité, nous distinguerons deux notions:
- Texistence des vides et leurs caractéristiques géométriques; on parlera de porosité totale;
- la facon dont ces vides sont occupés par un fluide et les relations fluides-solides qui s’établissent.

Nous décrirons enfin comment mesurer la porosité et la pression des fluides dans les pores.

2.1. POROSITE TOTALE

a) Roches grenues

La plupart des roches sont constituées de particules minérales solides, plus ou moins cimentées, formant
un squelette autour duquel subsistent des espaces vides: ce sont les milieux poreux au sens des mécaniciens
des fluides. Par exemple, les sables et les grés ont une porosité totale qui peut aller jusqu’a 30 %. Mais méme
les roches que ’'on suppose généralement compactes ont une certaine porosité: calcaires, dolomies (surtout
secondaires) et méme les roches cristallines et métamorphiques (de 12 5 %).

Les argiles constituent une catégorie & part: leurs éléments constitutifs, lamellaires, sont organisés en
“feuillets”: ce sont des empilements de couches paralléles séparées par des intervalles variables ou un fluide
peut se loger: cela leur procure, en particulier, des propriétés de gonflement en présence d’eau. Nous verrons
de plus que cette eau est fortement liée aux particules solides argileuses. Le pourcentage de vide peut
cependant étre trés élevé: jusqu’a 90 %.

b) Roches fissurées

Un cas particulier de vide dans les roches compactes est la fissuration: par le jeu de la tectonique, la
quasi-totalité des roches de I’écorce terrestre est fracturée: failles, fissures, diaclases. Ces fissures s’organisent
généralement en au moins deux directions principales de fissuration qui découpent la roche en blocs:
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On est donc en présence d’un réseau de fissures, plus ou moins interconnectées, qui peut créer des vides

dans la roche si les fissures ne sont pas colmatées par un remplissage quelconque (argile, calcite, quartz,
etc...).

On parle alors de porosité de fissure par opposition a la porosité d’interstice vue plus haut. Ces deux
types de porosité peuvent d’ailleurs coexister (gres, calcaires, etc. .. ).

c) Définition

Volume des vides
Volume total de la roche

Porosité totale w =
Les mécaniciens des sols utilisent aussi:

Volume des vides
Volume du solide plein

Indice des vides e =

Nous utiliserons toujours w, mais on passe de 'un & 'autre par:

ew=¢€¢—w

soit:
: e ¥
e+1 —(l—w)

d) Volume Elémentaire Représentatif ou Fonctions Aléatoires: définition des propriétés locales
d’un milieu poreux

Si I'on réfléchit un peu, cette notion intuitive de porosité pose quelques problémes si on veut la définir
précisément. Nous allons en discuter ici, en gardant a I’esprit que cette discussion reste valable pour d’autres
propriétés des milieux poreux (perméabilité, etc. .. ).

Il existe classiquement deux fagons de définir les propriétés locales d’un milieu poreux: Ia notion de
Volume Elémentaire Représentatif (VER ou REV en anglais) et celle de Fonctions Aléatoires, FA (random
functions en anglais; on désigne aussi par “ensemble average” une telle conception des milieux poreux). Nous
allons voir que ces deux notions sous-tendent implicitement la représentation que I'on donne aux variations
dans ’espace des paramétres hydrogéologiques.

Tout le probleme vient de ce que les notions de porosité ou de perméabilité, qui sont des notions
ponctuelles quand on écrit une équation aux dérivées partielles par exemple, ne peuvent étre définies - nj
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mesurées - ponctuellement: un milieu poreux est un assemblage de grains solides et de vides; en-dessous
d’une certaine échelle de volume, porosité et perméabilité n’ont plus de signification physique.

L’approche “VER” consiste & dire que I'on affectera a un point mathématique de ’espace la perméabilité
ou la porosité d’un certain volume de matériaux, le VER, qui permettra la définition - éventuellement la
mesure - de la propriété “moyenne” du volume en question. Il s’agit donc d’une intégration dans 'espace.

C’est évidemment la premiére approche qui vient & l'esprit. Elle est conceptuellement liée a la notion
d’échantillon que 1'on préléve et sur lequel on mesure ladite propriété. Plus précisément, la taille du VER
est définie en disant qu’il est:

- suffisamment grand pour contenir un grand nombre de pores, de facon que l'on puisse y définir une
propriété moyenne globale, avec I’assurance que I'effet de fluctuation d’un pore a I'autre sera négligeable.

On peut fixer, par exemple, le em® ou le dm3;

- suffisamment petit pour que les variations de paramétres d’un domaine au domaine voisin puissent étre
approchées par des fonctions continues pour pouvoir utiliser ’analyse infinitésimale, sans introduire
ainsi d’erreur décelable par les instruments de mesure & I'échelle macroscopique, qui s’exprime plutot
en metres ou en hectometres.

C’est d’ailleurs un peu le méme probleme que celui du passage, en mécanique des fluides, de 1’échelle
“corpusculaire” a I’échelle “parcelle de matiere”.

1l faut noter que, dans un milieu fissuré, la taille du VER peut devenir étonamment grande et infirmer

la deuxiéme hypothése “fonctions continues” a I’échelle des instruments de mesure.

On lie généralement la taille du VER (mesurée par exemple par une de ses dimensions caractéristiques £,
telles que rayon de la sphére, c6té du cube, ...) a Pexistence d’un palier dans la courbe relierait la propriété
intégrale étudiée P a la dimension ¢£:

IO} = =
\

Mais rien ne permet d’affirmer qu’un tel palier existe toujours. La taille du VER reste donc assez arbitraire.

Les principaux reproches que 'on peut de plus faire a cette conception des milieux poreux sont de deux
natures:

- d’abord, elle est trés mal adaptée au traitement des discontinuités du milieu: quand le VER est déplacé,
par la pensée, a la traversée d’une discontinuité, la propriété étudiée subit une variation continue:

1 Propriéié'

milieu 1

milieu 2
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ce qui pose parfois des probléemes de représentation aux limites ou entre deux milieux;

- enfin et surtout elle ne fournit aucune base pour étudier, dans 'espace, la structuration de la propriété;
tout au plus pourra-t-on dire que les variations dans I’espace des propriétés étudiées doivent étre lisses,
par le méme raisonnement que celui fait plus haut pour les discontinuités.

C. Marle (1967) a proposé de rendre plus rigoureuse cette notion d’intégration dans ’espace. Pour cela,
il propose d’utiliser une fonction de pondération m(z) qui soit intégrable et telle que son intégrale étendue 2
tout I’espace soit égale a I'unité; cette fonction de pondération ne sera pas nécessairement a support borné.
La grandeur macroscopique < a > (z) sera alors définie & partir de la grandeur mxcroscoplque locale a(z)
par une convolution étendue a tout I’espace de a par m:

<a>(z)= [a(z +z')m(z')dz’ x = coordonnées dans l'espace a
3 dimensions (z1,z2, z3)

Pour étudier la porosité, on choisira comme fonction a(x) une fonction “indicatrice” telle que a(z) = 1
si le poiunt z est dans un pore, et a(z) = 0 si le point z est dans un grain.

Marle propose de plus de généraliser cette définition aux propriétés “a” qui ne sont pas continues dans
I’espace*, et que l’on peut caracterlser par des distributions. La convolutlon est alors entendue au sens des
distributions.

Cette approche a I’'avantage de pouvoir rendre continue et indéfiniment différentiable la fonction < a >,
méme si a ne I’est pas, en choisissant convenablement m. Si le probléme de la taille du VER est éliminé, celui
du choix de la fonction de pondération reste encore arbitraire. Il est possible cependant de faire, grace a cette
fonction de pondération, le lien entre cette approche et la seconde, que nous allons maintenant regarder.

L’approche par les Fonctions Aléatoires (FA) est conceptuellement plus correcte. Elle consiste a dire
que le milieu poreux étudié est une réalisation d’un phénoméne aléatoire. Tentons de préciser ce concept
par une image. Supposons que nous fabriquions en laboratoire des colonnes artificielles de milieu poreux en
remplissant des tubes de verre identiques d’un sable, toujours le méme (par exemple, le méme échantillon
que l'on réutilise). Si le dispositif de mise en place reste identique a lui-méme, chaque colonne de milieu
poreux pourra étre considérée comme une réalisation de 'ensemble infini des milieux poreux aléatoires que
l'on peut ainsi fabriquer. Le mot aléatoire veut simplement dire ici que la configuration, ’arrangement, ou
les propriétés du milieu poreux vont varier d'une réalisation & 'autre et que outil le plus approprié pour
étudier ces variations de propriétés est le langage probabiliste, qui permet d’étudier la loi de distribution de
la propriété considérée sur ’ensemble fini des réalisations du milieu.

Sil’on veut choisir un exemple moins académique de réalisation d’un milieu poreux réel, on peut songer
aux innombrables plaines alluviales et cones de déjection descendant sur la cote péruvienne ou chilienne de
la Cordillére des Andes sur plusieurs milliers de km, provenant de P’érosion des mémes matériaux sous les

meémes conditions, donc avec la méme nature de dépét: on peut y voir un ensemble trés grand de reallsatlons
d’un méme mllleu

Intéressons-nous a une propriété, par exemple la porosité en un point mathématique fixe de I’espace.
Si 'on définit cette porosité ponctuelle comme 1 si le point est dans un pore, et comme 0 si le point est
dans un grain, on peut définir et calculer la porosité au point considéré en faisant la moyenne des porosités
de chaque réalisation. Plus généralement, on pourra calculer, en tous points, les propriétés statistiques de
cette porosité (espérance mathématique, variance de dispersion*™, covariance,...) a partir du moment ot ’on

* Par exemple, une densité superficielle de matiere adsorbée sur I'interface fluide-solide.

**  On appellera variance de dispersion cette variabilité propre du phénoméne, par opposition a la variance d’estimation
dont nous parlerons ultérieurement.
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connaitra, en tous points du milieu, la loi de distribution, ou loi de probabilité*, de la propriété entre les
diverses réalisations du milieu poreux.

Mais, dans la pratique, on ne dispose que d’un seul milieu poreux 4 étudier, donc d’une seule réalisation
du phénomeéne aléatoire “milieu poreux”. Pour pouvoir utiliser ces notions probabilistes, on leur adjoint
deux hypothéses qui caractériseront un milieu poreux homogeéne (au sens statistique).

L’hypothése de stationnarité: On supposera que laloi de probabilité de la porosité étudiée, sur I’ensemble
des réalisations, est stationnaire dans I’espace, ¢’est-a-dire la méme en tous points (invariante par translation).
Cette stationnarité concerne donc aussi bien la loi & un point d’appui que toutes les lois a plusieurs points
d’appui.

L’hypothése d’ergodicité: On supposera que la réalisation unique étudiée déploie dans P’espace la loi de
distribution stationnaire invoquée: il est donc possible, & partir de ’observation de la variation dans l’espace
géométrique de la propriété, sur la réalisation unique, d’en déduire la loi de distribution inconnue dans
’ensemble des réalisations possibles (mais absentes) du milieu poreux étudié ainsi que la loi de “conciliation”
des valeurs les unes par rapport aux autres, dans P’espace. Un milieu ou se vérifient les hypothéses de
stationnarité et d’ergodicité est dit “homogéne”*

On dira alors que la propriété étudiée, par exemple la porosité, est une Fonction Aléatoire stationnaire
et ergodique. Elle est alors parfaitement définie en tout point de I’espace par la connaissance de sa loi de
probabilité et de sa loi de “conciliation”*™

Comparant cette approche a celle basée sur I'intégration spatiale, Marle (1967) montre que la définition
probabiliste peut étre considérée comme la limite d’une définition intégrale, quand le milieu poreux est
supposé indéfini, ergodique et stationnaire, et que la fonction de pondération utilisée n’est pas a support
borné.

En effet, 'intégration spatiale dans un volume infini redonne I’espérance mathématique sur ’ensemble
des réalisations possibles si le milieu est bien stationnaire et ergodique.

Nous utiliserons tour & tour ces deux approches de la définition des propriétés des milieux poreux.

ou plus exactement les lois simultanées en tous les points de ’espace et la facon dont ces lois se “concilient” entre
elles, c’est-a-dire comment la valeur prise en un point dépend également des valeurs prises dans ’ensemble des
autres points. La loi de probabilité comporte donc non seulement la loi de répartition d’un point donné, C’est-
i-dire la probabilité pour qu’en un point on observe une valeur donnée, mais également les lois de répartition
simultanée de tous les points du milieu. On parlera, pour les distinguer, de loi & un “point d’appui”, ou loi a
plusieurs “points d’appui”.

“Homogéne” posséde donc un sens précis en statistique: c’est celui que nous conserverons pour la suite de
Pexposé. Par opposition, un milieu “hétérogéne” ne possédera pas ces propriétés de stationnarité et d’ergodicité.
On appellera uniforme un milieu que Pon qualifierait d’homogene dans le langage habituel, c’est-a-dire dans lequel
la propriété est la méme en tous points. On parlera de non uniforme dans le cas contraire. Un milieu homogene
au sens statistique est donc “non uniforme”.

**  Explicitons par un exemple ce que cela signifie pour un aquifere “homogéne”:

- laloi de distribution de la porosité sera, par exemple, normale: on trouvera cette loi a partir d’échantillonnage
dans espace de la valeur locale de la porosité, mais conceptuellement, cette loi s’applique a la distribution
en un point d’appui de la porosité de chacune des “réalisations” possibles de I’aquifere;

- la loi de conciliation dans ’espace n’en est pas pour autant fixée: deux points voisins peuvent avoir des
porosités qui soient indépendantes ou, plus probablement, qui manifestent une certaine dépendance: la
valeur prise en r se “concilie” avec la valeur prise en y. Nous étudierons ultérieurement cette loi de
conciliation dans l’espace par sa covariance ou par son variogramme. C’est la maniére la plus simple
d’aborder cette dépendance spatiale en ne considérant que la loi de distribution a deux points d’appui, z et
y, sans aborder les lois 2 3,4,...,n points d’appui qui existent tout autant que la loi & deux points d’appui
qu’exprime la covariance, mais qui sont en pratique inextricables.
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On peut noter que ce probléme de la définition des propriétés locales d’un milieu & deux phases (ici
solide et liquide) n’est pas ’exclusivité du milieu poreux. On pourra se référer utilement aux travaux de
Batchelor (1974) ou de P. de Gennes et E. Guyon (1978).

e) Porosité et granulométrie

Sil’on s’intéresse a des milieux poreux théoriques, constitués d’assemblages de sphéres de méme diameétre,

on peut montrer qu’il existe six cas possibles d’agencement des sphéres contiglies conduisant a des porosités
de:

26%-30%-40% - 48 %

Avec des sphéres de tailles différentes, la porosité est toujours plus faible car, comme le dit Houpeurt,
“en raisonnant sur les gros grains on peut dire que les petits occupent une partie des pores qui existeraient
entre eux, et inversement, en raisonnant sur les petits on peut dire que tout gros grain apporte une compacité
supérieure par sa seule présence”.

Pour des grains non sphériques, cette tendance 3 P’abaissement de la porosité est compensé, dans une
certaine mesure, par les irrégularités de forme des grains qui s’opposent 4 leur serrage maximal.

Pour les milieux non consolidés (sables,. . . ), on cherche & connaitre la distribution de la taille des grains
du milieu.

On réalise une analyse granulométrique du milieu, par tamisage par exemple, ce qui permet de tracer
la “courbe granulométrique” donnant le pourcentage (en volume ou en poids plus généralement) d’éléments
qui traversent un tamis dont les trous ont un diamétre donné:

100

50

5 : n L - logarithme du
1 100 {mm) diamétre

On appelle “diamétre efficace dyp” la dimension telle que 10 % des éléments du milieu soient plus petits

que dio. On admet que ce diq est le parametre qui conditionne le plus les propriétés de perméabilité du
milieu (voir Chap 4).

Cependant, il est toujours nécessaire de mesurer la porosité du milieu sans détruire I'agencement des
grains du milieu (voir § 2.3.): on sait que la porosité varie en fonction de I’agencement (cf. les spheres) et
que cet agencement est fonction de la consolidation, du tassement du milieu.

La Planche 3 donne quelques exemples de courbes granulométriques et une classification des termes
employés, selon la Société Internationale des Sciences du Sol: graviers - sables - silts - argiles.
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f) Porosité de surface
Sur une section de milieu poreux, on peut définir une

. Surface des vides
Porosité de surface totale w, =

Surface totale

Si la distribution et la taille des vides sont purement aléatoires, la porosité de surface est indépendante
de Porientation de la surface étudiée et a, de plus, la méme valeur que la porosité de volume: il suffit, pour
s’en convaincre, d’intégrer la porosité de surface sur une longueur élémentaire orthogonale au plan de section.
1l faut, bien sir, considérer des volumes et des surfaces de I'ordre du VRE.

1l n’en va cependant pas de méme si la distribution des vides n’est pas aléatoire, mais suit une loi
d’organisation fonction de la genése du milieu.

A Fontainebleau, le Centre de Morphologie Mathématique a beaucoup étudié les propriétés morpho-
logiques des milieux poreux et, en particulier, mis au point un appareil, I’analyseur de texture, qui peut
étudier Pagencement des pores et des pleins d’une section de milieux poreux, notamment la porosité: voir
les travaux de Serra.

g) Surface spécifique
Elle est définie par:

Surface totale des vides intersticiels
Volume total du milieu

Ssp =

Elle varie beaucoup d’un milieu a l’autre, étant d’autant plus grande que le milieu est plus divisé. Par
exemple, pour des sphéres de rayon R en arrangement cubique, elle vaut:

I
Ssp = 2%
Voici quelques ordres de grandeur:

150 & 220 cm?/cm3 pour un sable,
1500 cm?/cm3 pour un grés fin,
plusieurs millions de cm?/cm3 pour une argile,

par exemple: 1500 m?/m3 pour une montmorillonite.

Ce paramétre a une grande importance pour les phénomeénes de liaison fluide-solide que nous allons
aborder maintenant.

2.2. RELATIONS FLUIDES-SOLIDES DANS LES MILIEUX POREUX

2.2.1. Milieux saturés en eau

Occupons-nous d’abord des milieux a deux phases: solide et eau. Mis a part ’eau de constitution des
minéraux de la roche, dont nous ne parlerons pas, on est obligé de distinguer:

- Peau liée,
- ’eau libre.
a) L’eau lice

Elle est attachée a la surface des grains par le jeu des forces d’attraction moléculaire. Ces forces
décroissent avec la distance de la molécule d’eau au grain:
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- Une premiére couche adsorbée, dont I’épaisseur est de l'ordre de quelques dizaines de molécules (0,1
micron environ), correspond a une orientation des molécules d’eau a structure dipolaire H-OH per-
pendiculairement a la surface du solide. Les forces d’attraction de ces molécules atteignent plusieurs
dizaines de milliers de bars, mais décroissent rapidement avec la distance.

Dans cette couche adsorbée, les propriétés de ’eau sont fortement modifiées: tres grande viscosité, forte
densité (environ 1,5). De nombreux ions, principalement des cations, peuvent y étre retenus (adsorbés)
par attraction conjuguée des molécules d’eau et de celles du solide. Nous y reviendrons ultérieurement.

- Une zone de transition, entre 0,1 et 0,5 p, contient des molécules d’eau qui supportent encore une
attraction non négligeable et sont immobiles.

- Au-del3, les forces d’attraction sont négligeables, et I’eau est dite libre.
1l est évident que cette limite de 0,5 p est un peu arbitraire et varie d’'un milieu & Pautre: il s’agit

ici d’illustrer les phénoménes. La figure suivante illustre la variation de la force d’attraction des molécules
d’eau, et leur orientation au voisinage d’un grain solide.

Structure de la couche d’eau adsorbée au contact
d’une particule solide: la courbe dessine la variation de
la force d’attraction selon le profil AB en fonction de la
distance 4 la particule. (d’aprés Polubarinova-Kochina)
La couche d’eau liée peut étre d’épaisseur beaucoup plus
faible, inférieure a 0,1p.

////111111.4 IIIII — — — — — — — _ W g
0 05u
Eau liée | Eau libre
. el | = o P - e e e d e ——— e -

+— Couche adsorbée

Ces phénomenes d’adsorption des molécules d’eau et des ions sont liés a la surface spécifique du milieu
et sont particulierement importants pour les minéraux argileux, ce qui réduira beaucoup la possibilité pour

eau et les ions de circuler dans une argile, et nous aménera & définir une porosité cinématique d’un milieu
poreux.

b) Eau libre

Nous P’avons déja définie, c’est celle qui est en dehors du champ d’attraction des particules solides, et

qui est susceptible de se déplacer - par opposition & ’eau liée - sous Peffet de la gravité ou des gradients de
pression (voir Chap. 4).

c) Porosité cinématique d’un milieu saturé

En quelque sorte, ’eau liée peut étre considérée du point de vue déplacement des fluides comme faisant
partie du solide. Le volume vide oli ’eau peut circuler est donc inférieur & la porosité totale: on définit ainsi
une porosité cinématique (ou encore efficace) d’un milieu saturé.
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Mais il faut bien voir que la définition de la porosité est déja liée & la notion de circulation des fluides,
non au pourcentage de volume occupé par la phase fluide.

D’autres phénoménes que ’adsorption viennent limiter la porosité cinématique:

- Dexistence de pores non connectés: ce sont des “bulles” de liquide insérées dans la phase solide. Comme le
liquide contenu ne peut circuler, on ne prend pas ces vides en compte dans la porosité cinématique. Nous
verrons d’ailleurs au § 2.3. que certaines méthodes de mesure de la porosité, basées sur I'imprégnation
du milieu poreux par un fluide, excluent les pores non connectés.

L’exemple le plus habituel est celui de la dolomite secondaire (c’est-a-dire une dolomite formée postérieure-
ment au dépot, par transformation diagénétique de calcite en dolomite). Cette transformation s’accom-
pagne d’un retrait, avec cristallisation anguleuse de la dolomite. La porosité totale est élevée: 20 a 30
%, mais la porosité cinématique faible car ces vides ne sont pas interconnectés.

- Dexistence de pores culs-de-sac, par exemple:

T/

L’eau contenue dans ces pores culs-de-sac est pratiquement immobile, seule circule I’eau dans les “con-
duits” du milieu.

On exclut donc ces pores de la porosité cinématique, cependant ils auront un réle & jouer quand nous
étudierons les mécanismes de compressibilité ou transports d’éléments dissous dans les milieux poreux.

- a une échelle encore supérieure, une roche fissurée, dans laquelle I’eau ne circule que dans les fissures,
aura une porosité cinématique liée au volume de ces fissures, méme si la matrice rocheuse non fissurée
est poreuse. Ainsi un granite fissuré, qui a une porosité totale de matrice de 1 & 2 %, pourra avoir une
porosité cinématique inférieure & 1°/,, car la matrice elle-méme est trés peu perméable.

. cs e . Y ’ i 1
En définitive, porosité cinématique w, = \Ol{l/g;ﬁrgeeigtglu hgel:tr;::rhc:ler

d) Remarques: Conséquences pour le tragage de 'eau

Nous verrons ultérieurement que ’on peut relier la porosité cinématique a la vitesse de circulation de
I’eau dans le sol. D’ou 'idée d’ajouter un traceur a ’eau, pour mesurer expérimentalement in situ la vitesse
de 'eau.

Ceci pose pas mal de probléemes, car il faut choisir un traceur qui ne soit pas adsorbé dans la couche
d’eau liée ou a la surface des grains. Mais méme si ce probléme est résolu (dans certains cas, en utilisant

par exemple de I'eau tritiée avec un atome de tritium *H), il subsiste une inconnue dont on ne connait pas,
a ’heure actuelle, I'importance exacte.

En effet, notre schéma phase eau en circulation-phase eau immobile (liée ou pores & eau immobile)
correspond a une certaine échelle microscopique d’observation des phénomeénes, celle de couches et de filets
liquides. Si I'on descend a I’échelle moléculaire, les choses peuvent changer: il peut y avoir des échanges
continuels de molécules d’une phase & ’autre sous I’effet de I’agitation moléculaire; par exemple, une molécule
en circulation peut se retrouver immobilisée au cours de son parcours pendant qu’est relachée une molécule
initialement fixe: du point de vue des circulations de fluide, rien n’est perceptible, mais la notion de tragage
du cheminement d’une molécule d’eau perd son sens. A la limite, est-on en droit de faire une distinction
entre deux molécules d’eau que rien ne permet physiquement de distinguer? Ainsi une molécule en position
A alinstant to et en B a I'instant ¢; peut trés bien avoir cheminé suivant A,C,B et avoir été “échangée” en
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C par une molécule initialement liée, & laquelle elle a communiqué son énergie. La question: “la molécule en
B est-elle ou non celle qui était en A” a-t-elle un sens?

Dans un milieu poreux, le cheminement d’une molécule d’eau peut étre beaucoup plus complexe que
I'image microscopique ne le laisse imaginer, rendant peut-étre illusoire la notion de tragage pour atteindre
autre chose que la vitesse de circulation d’un élément en solution dans ’eau.

2.2.2. Milieux non saturés

Ce probléme se complique du fait de l'existence d’une troisiéme phase: 1’air, en plus de I’eau et du
solide.

a) Teneur en eau et saturation volumique

On définit la teneur en eau © dans un VRE par le rapport:

Volume d’eau contenu

Volume total
et la saturation volumique:

Volume d’eau contenu

S =
Volume total des pores

© peut varier de 0 a la porosité totale w, et s de 0 4 1, ou 0 4 100 %.

b) Relations air-eau & différentes teneurs en eau

On constate, dans un sol contenant & la fois de 'air et de 1’eau, que I’eau libre “mouille” les grains

solides, c’est-a-dire les entoure, tandis que lair a tendance a étre diposé au milieu des vides. On obtient
ainsi pour diverses teneurs en eau:

- Sol presque saturé en eau:

- La phase eau est continue et peut circuler sous l'influence de la
gravité.

On parle d’eau “funiculaire”, ou eau gravifique.
- La phase air est discontinue et ne circule pas. Elle peut atteindre

10 4 15 % de la porosité, méme dans un sol dit saturé proche de
la surface libre de la nappe.

Les bulles d’air emprisonnées ne peuvent franchir les points de
striction des canalicules joignant les pores que s'il existe un gra-
dient de pression suffisamment élevé dans la phase eau.
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- Sol a4 la saturation d’équilibre, ou encore & la “capacité de rétention capillaire”:

- La phase eau est encore continue, mais ne circule plus sous la seule
influence de la gravité. On dit, en agronomie, que le sol a atteint
sa “capacité au champ”: celui d’un sol quelques jours aprés la pluie
quand I’eau qui peut s’écouler par gravité a quitté le profil. On appelle
parfois “porosité de drainage” (en anglais: specific yield) la part de
la porosité qui peut étre drainée par gravité, notée wy, c’est-a-dire la
différence entre la teneur en eau du milieu saturé et celle obtenue a
la saturation d’équilibre. Notez qu’il y a transmission de la pression
a travers la phase eau continue, et qu’en conséquence la saturation
d’équilibre varie en toute rigueur avec |’élévation du point considéré
au-dessus de la surface libre de la nappe (voir plus loin).

- La phase air est également continue, mais ne circule généralement pas.

y _grains
V72D +2

- Sol faiblement saturé:

- L’eau entoure les grains et occupe des anneaux discontinus aux points
de contact de ceux-ci. On parle d’anneaux “pendulaires”, ou eau “pen-
dulaire”. La phase eau est toujours continue, les pressions se transmet-
tent, mais les mouvements de l’eau sont trés lents du fait de la minceur
de la pellicule mouillée.

- La phase air est continue, mais généralement immobile. Dans ce cas, I’évaporation 3 I'intérieur du sol
peut devenir non négligeable vis-a-vis des autres flux. L’eau évaporée, pour quitter le sol, doit migrer
par diffusion moléculaire vers ’extérieur, ce qui est un phénomeéne trés lent. On pourrait aussi concevoir
une migration par cellules de convection densitaires, mais un tel phénomeéne n’a jamais encore été mis
en évidence.

- Saturation irréductible:

Pour descendre en-dessous de la saturation d’équilibre, il a fallu mettre en ceuvre d’autres phénoménes
que la circulation gravitaire: évaporation et transpiration des végétaux.

Si la teneur en eau continue & décroitre, on ne retient finalement que l’eau liée, appelée encore eau
hygroscopique par certains.

Cette saturation irréductible est en fait fonction des moyens de desséchement utilisés:

- saturation irréductible dans un sol naturel: le desséchement est engendré par les phénoménes naturels;
- saturation irréductible & 105°. On desséche généralement un sol par étuvage 4 105°. On a choisi
arbitrairement cette température car on risque au-deld de commencer a décomposer certains minéraux
et a extraire de I’eau de composition de la phase solide. Il est certain cependant qu’une faible fraction

d’eau liée est encore présente dans le sol. Ainsi, il faut chauffer une argile & 900° pour en extraire toute
son eau.

La pellicule d’eau liée forme en fait un film continu qui entoure les grains quel que soit 1’état de saturation.

c) Pression capillaire

Entre deux fluides en contact, ou un fluide au contact d’un solide, il existe une énergie superficielte
engendrée par la différence entre la force d’attraction des molécules vers Vintérieur dans chaque phase et la
force d’attraction des molécules a travers la surface de contact. Cette énergie superficielle se manifeste par
une tension superficielle o;;, définie par la quantité de travail nécessaire pour séparer I'unité de surface des

substances i et k. La tension o;; est une constante pour deux substances données, qui ne varie qu’avec la
température.

La tension superficielle o; entre un liquide et sa propre vapeur est appelée tension de vapeur.
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Pour deux fluides en contact avec un solide, la loi de Young donne I’angle de raccordement de l'interface:

air

@ eau

solide S

O, mesurée de 0 3 180° dans le fluide plus dense (I’eau ici) est donné a I’équilibre par:

Oy — OS5€
cos @ = ———
Oge

1l n’y a pas d’équilibre possible si ce rapport est supérieur a 1: dans ce cas, l'un des fluides (I’eau ici) se
répand indéfiniment sur le solide.

Si © <90°, le fluide est dit mouillant. C’est le cas de I’eau ici.
Si © >90°, le fluide est dit non mouillant. C’est le cas de lair ici.

On appelle ¢4, cos O la tension d’adhésion.

De part et d’autre de P'interface air-eau, la pression n’est pas la méme dans les deux fluides. On appelle
pression capillaire cette différence de pression.

PC=Pair—Peau

si r est le rayon moyen de courbure de l'interface:

r’ et r” rayons de courbure principaux.
L’équation de Laplace dbnne la pression capillaire:

204.

P. =

Celle-ci peut étre trés élevée si les rayons de courbure sont petits. Comme la phase air, si elle est
continue, est généralement a la pression atmosphérique, ceci entraine que la phase eau est a une pression
négative qui peut atteindre plusieurs bars: on parle alors de succion ou de tension. Ainsi le point de
flétrissement de certains végétaux est atteint pour une tension de I'ordre de 15 bars si on prend zéro comme
pression atmosphérique de référence. Si on prend, par exemple, une tension d’interface air-eau de 0,076
Newton/m & 20°, cela donne un rayon de courbure moyen des ménisques d’eau dans le sol non saturé de 0,1
u, soit proche de la dimension de la couche d’eau adsorbée.

Dans un milieu poreux, & chaque teneur en eau correspond une répartition des phases air et eau a
Pintérieur d’un VRE. La phase eau étant continue, les pressions s’y égalisent a une cote donnée; en moyenne,
les interfaces prennent alors un certain rayon de courbure et il en résulte une pression capillaire unique; cette
pression capillaire est donc une fonction de la teneur en eau, ou de la saturation. Si on suppose la pression

de P’air nulle, on trace souvent la pression dans I’eau en fonction de la saturation en définissant le potentiel
de succion:

_ — Peau Peau
pF =log,, , en cm
124 P9

p: masse spécifique de I’eau.
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On obtient, par exemple, des courbes:

Potentiel
de
succion

Cependant, on constate que cette pression capillaire présente des phénoménes d’hystérésis avec la sa-
turation suivant que ’on asséche ou que I’on humidifie le sol: en effet, la forme que prennent les interfaces,
a une saturation donnée, n’est pas la méme suivant que 1'on imbibe un sol sec ou que ’on draine un sol
humide: des “bulles” de fluide restent prisonniéres, les angles de raccordement des interfaces ne sont pas
tout a fait les mémes, il se produit des phénomeénes de dilatation ou de tassement, etc.... On observe donc

deux potentiels:

pF

Il existe toute une série de cycles intermédiaires tels que celui dessiné entre les deux courbes enveloppes.

Il faut noter enfin que si 'on attend un temps assez long, l’air piégé est finalement dissous ou entrainé

0

pF

Sable, granulométrie inférieure & 500 i
Sable de Ramona

Argile limoneuse de Placentia

Sables limoneux de Hanford

Argile limoneuse de Yolo

Argile silteuse de Chino

w

Variation du potentiel de succion pF avec la
saturation pour différents sols, d’aprés Bear
. (1972)

0 10 20 30 40 50 60 70 8090 100 saturation

courbe de drainage

cycle intermédiaire

courbe d’humidification

pression de seuil, ou d’entrée d’air, en-dessous
/de laquelle I'air n’entre pas dans le milieu.

air 100% saturation
piégé

par la circulation d’eau et le point représentatif évolue d’une courbe vers 'autre.

d) Profils de teneur en eau

Le schéma suivant résume les principaux intervalles que ’on a définis dans le continuum sol-eau-air.

Toutes ces zones se retrouve également sur un profil de sol tel que nous en avons vus au Chap.1: la

Planche 4 illustre ce découpage.
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Eau capillaire eau gravifique

Eau liée ou ou pendulaire ou funiculaire
hydroscopique insensible a I’action circule sous I’action

de la gravité de la gravité

100%

i
saturation saturation saturation
irréductible d’équilibre totale

———————capacité de rétention capillaire ¢ porosis': de drainage——
d

Zone a circulation lente,
fonction du temps, de

P’échelle
eau liée pores non connectés 1 Porosité
ou culs-de-sac | totale w
! |
capacité de rétention porosité cinématique—

ou efficace w,

Au-dessus du niveau de la nappe se trouve d’abord une zone saturée @ 100 %, ou presque, appelée frange
capillaire, ol la pression de ’eau est inférieure & la pression atmosphérique: c’est ’équivalent de 'ascension
capillaire dans des tubes; il faut en effet qu’existe une certaine pression capillaire (pression de seuil) pour que
de Dair & la pression atmosphérique et de I’eau soient en équilibre a travers une interface. Il peut cependant
y avoir de I’air piégé dans cette zone (d’ol une saturation inférieure a 100 %, par exemple 85 4 90 %).

Au-dessus, la pression capillaire augmente et la saturation diminue jusqu’a atteindre la saturation
d’équilibre: le profil dessiné est statique.

En surface, nous avons représenté un sol desséché et un sol humidifié, qui sont en situation transitoire:
- Deau gravifique va s’infiltrer et descendre le long du profil;

- la dessication de surface va engendrer une circulation ascendante, que nous étudierons avec les circula-
tions dans les milieux non saturés.

En regard du profil de saturation, nous avons porté le profil de pression. D’apres les lois de I'hydrostatique,
un profil 3 I’équilibre doit montrer une variation linéaire de la pression avec la cote.

Par définition, la pression est nulle (c’est-a-dire égale & la pression atmosphérique) a la “surface libre”
de la nappe. En dessous, la pression croit linéairement avec la profondeur, au-dessus, elle décroit (devient
une succion) avec la cote. Pour s’en convaincre, songez que tant que la phase eau est continue, deux points
A Péquilibre hydrostatique distants de AZ verticalement ont une différence de pression pg AZ.

Réciproquement, tout point représentatif se situant & gauche de la droite d’équilibre de la pression
signifie qu’un écoulement ascendant s’établit (respectivement a droite. . . descendant).

Notez que l'existence de la zone AB, ol la saturation semble ne pas varier alors que la pression varie,
est liée & la forme des courbes succion-teneur en eau présentée a la page précédente. Sur ces graphiques,
la succion est portée sur une échelle logarithmique: en dessous d’une certaine saturation, les profils sont

presque verticaux, c’est-a-dire qu’une variation d’une puissance de 10 de la pression n’engendre qu’une tres
faible variation de la saturation.

Dans la pratique, un sol n’est presque jamais en équilibre hydrostatique et le profil de pression réel

s’écarte presque toujours de la droite d’équilibre; mais le sens de cet écart donne justement la direction de
I’écoulement.
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Cote Z Sol désséché en surface (saturation irréductible)
Surface du sol
'\‘ .
\ ,/ Sol humidifié aprés une pluie Et.at_
\ /_/ (infiltration d'eau gravifique) transitoire

A

Zone de faible
variation de la
teneur en eau

B Protil & I'équilibre
——————————————————— Frange capillaire (saturation 100%)
N “[Niveau de la nappe observé
: dans un puits (surface libre)
i
Pression négative 0 Pression 0 100% Saturation

{succion)

Pression de seuil,
ou d'entrée d’air

P1.4 - Profil de saturation et de pression dans un sol.
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Ces pressions négatives élevées (donc inférieures au vide absolu) auxquelles peut étre soumise 'eau dans
un sol non saturé ne doivent pas surprendre: elles mesurent en fait un état énergétique de l'eau du sol,
c’est-a-dire la quantité d’énergie qu’il faut fournir pour extraire une molécule, qui est liée au sol par des
forces électrostatiques.

2.3. MESURES DE LA POROSITE

a) Méthodes directes sur échantillon

Elles sont assez délicates et doivent étre réalisées dans un laboratoire spécialisé:

- On mesure d’abord le volume total de I’échantillon, soit par ses dimensions, en particulier la dimension
de P’échantillon de sol non consolidé que I’on préléve par carottage avant que la structure ne soit détruite,
soit par le volume de liquide qu'il déplace aprés que sa surface ait été imperméabilisée.

- On peut ensuite mesurer le volume de solide par la poussée d’Archiméde sur la phase solide baignée
dans un liquide mouillant (saturation sous vide, ou a I’eau bouillante, ou avec du CO,, dissous ensuite
par ’eau, etc...). On obtient ainsi la porosité des vides connectés entre eux. Il faut broyer I’échantillon
pour atteindre la porosité de tous les vides méme non connectés.

- On peut ensuite mesurer le volume des pores connectés:

en injectant du mercure a pression élevée dans la roche en faisant le vide dans P’échantillon pour
déplacer l'air contenu;
en pesant I’échantillon sec et ensuite saturé d’eau, etc. ..

b) Méthodes indirectes in situ
- Résistivité du terrain

A Dexception des argiles, les minéraux usuels du sol sont isolants et I’électricité circule dans le sol dans
la phase liquide. La résistivité sera donc fonction de la porosité.

Les géophysiciens proposent la relation empirique suivante: on définit le “facteur de formation” F par
le rapport des résistivités de-la roche et de I’eau qu’elle contient:

résistivité de la roche

résistivité de ’eau contenue

La formule d’Archie donne alors:

C
F=— C~1
wm
m est le “facteur de cimentation” qui varie de 1,3 pour les roches non consolidées a 2 pour les calcaires,
w est la porosité totale.

On peut corriger la formule s’il existe des particules argileuses en quantité connue dans la roche.
La porosité obtenue en mesurant ces deux résistivités est plutot une porosité totale.
Ces formules sont utiles pour interpréter des diagraphies électriques dans des sondages.

- Diagraphie neutron

On bombarde le terrain avec des neutrons rapides (sources & I’américium généralement), puis on compte
les neutrons lents produits par ralentissement des neutrons rapides sur les atomes d’hydrogéne, qui sont
essentiellement présents dans la phase eau.

On peut obtenir ainsi la porosité des milieux saturés, et surtout la teneur en eau des milieux non saturés.
1l est préférable cependant de faire un étalonnage de la méthode sur un échantillon de sol sec, pour retrancher
la part des atomes d’hydrogéne qui ne sont pas liés & la porosité (eau de constitution, argiles,. .. ).
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- Mesure des densités (méthode gamma-gamma)

On bombarde le terrain avec des rayons gamma. On détecte la partie non absorbée du rayonnement
a une distance fixe de ’émetteur. Cette quantité est fonction inverse de la masse spécifique des terrains
traversés par le rayonnement. Or cette masse spécifique est liée & la porosité:

pr =wpe + (1 —w)p,

Sl pr, Pe, P, sont les masses spécifiques de la roche en place, de ’eau et des grains solides qui la constituent,
respectivement.

- Vitesse du sol

Elle est liée a de nombreux parameétres, en particulier & la porosité par la quantité de fluide contenue
dans la roche. La méthode n’est cependant pas trés utilisée.

¢) Quelques valeurs de porosité

Nous avons défini un certain nombre de grandeurs:
- porosité totale, w,
- porosité de drainage d’un sol non saturé, wq, et son complément, la capacité de rétention capillaire,
- porosité cinématique d’un milieu, w,, et son complément, la capacité de rétention saturée.

Ces notions ne sont pas toujours faciles a distinguer et a évaluer. A titre d’exemple, voici les résultats
obtenus par King aux USA (cités par Geze) sur le drainage de sables homogénes calibrés:

Percolation: quantité d’eau recueillie en:
Taille des Porosité totale
grains calculée du 10¢ jour Rétention
1° 1/2h 2° 1/2h 9 jours a Total capillaire
suivants 2,5 ans apres 2,5 ans
0,475 mm 38,86 % 10,68 % 4,88 % 8,72 % 2,60 % 26,88 % 6,87 %
0,083 mm 39,73 % 1,26 % 0,90 % 11,29 % 2,01 % 15,46 % 18,87 %

La différence qui existe entre porosité totale calculée et la somme porosité de drainage+rétention capil-
laire vient des erreurs de mesures et de calcul de la porosité totale. On constate donc que la porosité de
drainage est en fait fonction du temps que 'on laisse & la roche pour s’égoutter.

Si 'on s’intéresse a la quantité d’eau que I'on peut extraire d’une roche par drainage, c’est la porosité
de drainage qu’il faut tacher de mesurer.

Si c’est a la quantité d’eau qui s’écoule dans une roche saturée, par exemple pour un calcul de vitesse
d’écoulement, c’est a la porosité cinématique qu'il faut penser.

Enfin, si c’est a la quantité totale d’eau contenue dans un milieu poreux, par exemple pour des probléemes
touchant a la compressibilité de la phase fluide, ou 4 la possibilité pour des ions en solution de se diluer dans
la phase fluide, c’est a la porosité totale qu’il faut penser.

Il faut reconnaitre que, dans la pratique, on parle souvent de porosité sans spécifier 4 laquelle on se
réfere; en particulier porosité de drainage et porosité cinématique telles que nous les avons définies, sont
souvent confondues sous le terme de porosité efficace: c’est certainement regrettable.

Voici quelques ordres de grandeur de la porosité d’interstices, sans parler de la porosité de fissures:
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- Granite et gneiss non altérés: 002 a 18 %
- Quartzites: 08 %

- Schistes, ardoises, micaschistes: 05 a 75 %
- Calcaires, dolomies primaires: 05 24125 %
- Dolomies secondaires: 10 a3 %
- Craie: 8 a3r %
- Gres: 35 a3 %
- Tufs volcaniques 30 a4 %
- Sables: 15 ad8 %
- Argiles: 44 a5 %
- Argiles gonflantes, vases: jusqu’a 90 %
- Sols de cultures labourés: 45 a6y %

En régle générale, plus les grains d’une roche sont fins, plus la porosité efficace diminue, et plus la
capacité de rétention augmente, ainsi que I'illustre le diagramme ci-dessous, d’aprés Eckis, cité par Castany
et Pélissonnier, mais qu’il ne faut pas prendre 3 la lettre pour fixer la porosité en fonction de la taille des
grains (les expériences de King par exemple s’y interprétent mal).

50% l
e e Porosité totale
P
40 ~
~
~N
\\
% \ /1 N\
Porosité efficace
\ ' \
. \ \\
20 S
4 \ Sd_—-
, p—
y \ Capacité de rétention
10 -
T Diamétre moyen des
o \"‘-’ grains (mm)
0,0001 0,001 0,01 0,1 1 10 100 1000 mm
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2.4. MESURE DE LA PRESSION DE L’EAU DANS LE SOL

a) Dans la partie saturée
- Piézométre:

Si le milieu est assez perméable, on fore simplement un trou dans le sol, que 'on équipera d’un tubage
perforé si le trou a tendance & s’ébouler. Le niveau de I’eau dans le tube donnera la surface libre de la
nappe, point ol la pression est nulle (& la pression atmosphérique preés). Sous la surface libre, la pression
croit linéairement avec la profondeur si le systéme est hydrostatique.
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- Pressiométre:

Si le milieu est peu perméable (argile ou sable argileux par exemple), on introduira (par battage) dans
le sol un tube muni d’une pointe poreuse (métal fritté) suivant le schéma ci-dessous: Pression| 1 retour nul

Injection Manomeétre

d'air rE

[ ]
(]

Position fermée

Tube acier L
Pression'l 1 Retour
Détail (coupe) H

air
eau

Position ouverte

Pointe poreuse (Y ]
diameétre environ 5 cm égalité de pression

En injectant de ’air (pompe a pied ou bouteille) par une petite conduite plastique en surface, tout en
surveillant la pression de cet air, on ouvrira la membrane en caoutchouc quand la pression de ’air sera égale

a celle de I’eau, provoquant ainsi un retour d’air en surface, que I’on détecte en plongeant le tube de retour
dans un verre d’eau.

b) Dans la partie non saturée

Pour mesurer la succion, dans le non saturé, on utilise une “bougie” poreuse en céramique, mise en place
verticalement (ou horizontalement & partir d’un puits ou d’une tranchée) que ’on appelle “tensiométre”:

Tube de mise en place Bougie cylindrique de céramique poreuse

T

YRR

PRTRF EREORE

Longueur5ai10cm

Diamétre 13 2cm
Manometre

L’eau contenue dans la bougie se met en équilibre de pression, & travers la céramique poreuse, avec I’eau
du sol (continuité de la phase eau & travers le sol non saturé et la bougie - qui est un milieu poreux comme
un autre). On mesure donc la succion avec un manométre. Cependant ce dispositif est limité a une succion

de 800 2900 millibars environ: au-deld, I’eau se met & bouillir dans la bougie a la température ordinaire, et
le tensiomeétre “désarmorce”.

Pour descendre en dessous d’un bar, il faut utiliser des méthodes indirectes, telles que des blocs de platre
équipés d’électrodes enfouis dans le sol, et dont ’eau qu’ils contiennent se met en équilibre de pression avec

celle du sol. Par étalonnage de la relation pression-teneur en eau-résistivité du bloc de platre, on estime ainsi
la succion dans le sol.

{conduite plastique)

Membrane de
caoutchauc
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Notez que, pour établir ces étalonnages en laboratoire (sur sols réels ou blocs de platre) de la relation
succion-teneur en eau, on augmente artificiellement la pression atmosphérique (enceinte pressurisable) pour
éviter que la succion (différence de pression eau-air) n’entraine 1'ébullition.



Chapitre 3

NOTIONS DE BASE EN HYDRAULIQUE

3.1. Egquations générales de la mécanique 3.2.3. Vitesse microscopique moyenne
des fluides 3.3.  Charge hydraulique et cote

3.2. Equation de continuité en milieu piézométrique
poreux 3.4. Simplification et intégration des
3.2.1. Vitesse de filtration moyenne équations de Navier-Stokes en milieux
3.2.2. Simplification des notations poreux schématiques

3.1. EQUATIONS GENERALES DE LA MECANIQUE DES FLUIDES

Dans ce chapitre, nous allons principalement établir la forme de I'équation de continuité en milieu
poreux. Cette équation exprime simplement que, dans un volume fermé fixe, la variation de la masse de
fluide contenu dans I'unité de temps est égale a la somme algébrique des flux massiques traversant la surface
du volume considéré. C’est donc le principe fondamental de conservation de la matiére, le “rien ne se perd,
rien ne se crée” de Lavoisier. :

L’établissement de cetté équation suppose que le lecteur posséde quelques souvenirs de mécanique des
fluides générale. Si ce n’est pas le cas, il pourra se contenter de lire le début du paragraphe 3.2.1. et les
paragraphes 3.2.2., 3.2.3. et 3.3.

On montre, en mécanique et thermodynamique des fluides, que tout probléme d’écoulement de fluide
newtonien* se raméne a la détermination de six inconnues:

p la masse volumique du fluide, [M L=3],
P la pression, [M L™ T~2],
[ la température,

uzr,uy,uz les composantes du champ de vitesse u, inconnues elles-mémes fonction du temps
t et du point de 'espace.

Nous allons utiliser les coordonné=s d’Euler, c’est-a-dire un repére fixe par rapport au laboratoire (ou

au terrain), et chercher a exprimer ces six inconnues en fonction des variables spatio-temporelles z* et ¢.
Nous disposons pour cela:

- de ’équation de continuité, qui exprime la conservation de la matiére:

div (pi) + %’tz =0 (3.1.1)

établie dans un élément de volume fixe par rapport au repere du laboratoire.

* Un fluide newtonien est un fluide isotrope, dont la pression ne dépend que des variables d’état p et 6, dont le
tenseur de viscosité est une forme linéaire du gradient de vitesse, dont les coefficients ne dépendent que des variables
d’état.
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. o d . v . .
On peut encore 'écrire p div 4+ % _ 0 en coordonnées de Lagrange, c’est-a-dire en suivant le déplace-

dt

ment de la matiére & sa vitesse u.

- des équations de Navier-Stokes, ou des équations de la dynamique, qui expriment le principe de la
mécanique: f = my pour des fluides visqueux dont les coefficients de viscosité sont supposés constants:

a d ... . ; . dut

ap; - (C + %) ﬁ(dlv @) —pVii=p (F' - 7) (3.1.2)
¢ coefficient de viscosité de volume, négligeable devant u, [ML™' T -1,

p coefficient de viscosité dynamique, [ML~! T71],

Notez qu’on appelle le rapport v = p/p[L? T~'] la viscosité cinématique,

V? laplacien,

F* composante des forces a distance par unité de masse: gravité par exemple, [LT2).

Les équations de Navier sont au nombre de 3, une pour chaque direction z' de l'espace. Ceci nous
donne donc quatre équations. Dans le cas général, les deux équations restantes sont d’une part I’équation
de la chaleur (transport conductif et convectif de la chaleur par le fluide), d’autre part ’équation d’état du
fluide donnant sa masse volumique p en fonction de la pression et de la température. En milieu poreux, on
pourra souvent simplifier le probléme en constatant que I’extréme division du milieu poreux et son énorme
capacité calorifique font que les écoulements y sont en pratique toujours isothermes. L’inconnue température
disparait donc, et il nous suffira d’une équation supplémentaire.

- D’équation d’état du fluide, que nous prendrons de la forme:

p= poeﬂ("”"’) (3.1.3)
B = coefficient de compressibilité du fluide, (M~ LT?].

Nous allons regarder comment transposer ces lois au milieu poreux.

3.2. EQUATION DE CONTINUITE EN MILIEU POREUX

3.2.1. Vitesse de filtration moyenne et équation de continuité macroscopique

Montrons tout de suite ol nous voulons en venir. Soit @ la vitesse réelle du fluide dans chacun des pores
du milieu poreux (on dit encore vitesse microscopique). Soit p la masse volumique du fluide a cette échelle et

w la porosité ponctuelle (w = 1 dans un pore, w = 0 dans un grain). A cette échelle, 'équation de continuité
ordinaire rappelée ci-dessus s’applique a l'intérieur des pores.

Nous définissons alors des quantités macroscopiques, ou “moyennes”, dans le milieu poreux, que nous
noterons provisoirement < @ >, < p >, < w >. Ces grandeurs macroscopiques seront définies soit par
intégration dans l'espace, comme I'a proposé Marle (cf. Chap. 2.1.d) grace a une convolution par une
fonction de pondération m; soit encore par une définition probabiliste, I’espérance mathématique de @, p,w
au point z considéré, pour I’ensemble des réalisations possibles du milieu.

Nous établirons alors 1'équation de continuité en milieu poreux, équivalente de (3.1.1):

. . 0
div [<p><u>]+§[<p><w>]=0

- < > désignant la prise de moyenne

- < i@> vitesse fictive moyenne, est appelée_vitesse de filtration. Nous la noterons U ultérieurement.
Notez I’apparition du terme < w > dans le 2°™€ terme.

1l est important de bien saisir la signification physique des deux termes de cette équation. Elle exprime
que, dans un volume fermé, la somme des flux massiques entrant est égale a la variation de la masse
contenue dans ce dit volume. Bien qu’on I'exprime de fagon ponctuelle, elle s’établit toujours pour un
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volume élémentaire D fize dans ’espace (nous aborderons au Chapitre 5 le cas du volume mobile dans
Uespace).

Par application de la formule d’Ostrogradski *, il est évident que la divergence de < p >< % > représente
le flux massique de < p >< @ > a travers la surface ¥ de D. Mais il faut bien voir que < 4 >, que nous
définirons, est une vitesse moyenne fictive, c’est celle dont serait animé un fluide qui aurait, pour s’écouler,
I’ensemble de I’espace, pore+grains, au lieu de n’occuper que les pores. En effet, le terme div (< p >< @ >)
signifie que I’on intégre < p >< @ > sur la totalité de la surface ¥ au domaine D, et non sur les seuls pores.
C’est pourquoi on appelle < @ > vitesse de fillration.

Enfin la masse de fluide contenue dans D n’est pas fD pdv, mais fD pwdv, car il n’y a du fluide que dans
les pores. Il est donc normal de voir apparaitre < w > dans le 26™€ terme.

Nous allons maintenant établir de fagon rigoureuse cette équation. Ceux qui veulent en rester 13 avec
la théorie peuvent sauter au paragraphe b), mais regarder les deux définitions de la vitesse de filtration (cas

incompressible et compressible).
- Etablissement de I’équation de continuité en milieux poreux.

Ce développement suit ’exposé de Marle (1967).

Soit @ la vitesse microscopique locale a I'intérieur des pores du milieu poreux. Pour passer a une échelle
supérieure, nous allons utiliser la notion de Volume Elémentaire Représentatif (VER) que nous avons définie
au § 2.1.d. Avant cela, convenons d’étendre le domaine de définition de @ a I’ensemble de 'espace avec, bien
sur, @ = 0 dans les grains.

a) Cas ot le fluide et le solide sont incompressibles

L’équation de continuité a I'échelle microscopique se réduit a:
divi=0 car p est constant

De plus, la vitesse i est continue dans tout I’espace car u est nulle aux parois en régime laminaire et
définie comme nulle dans les grains.

Pour définir la vitesse macroscopique moyenne < 4 >, ou vitesse de filtration, nous allons intégrer la
propriété locale dans ’espace, pondérée par une fonction de pondération m(z) telle que:

Jm(z)dz =1 z: coordonnées a trois dimensions

I'intégrale peut peut étre étendue soit a un certain domaine D borné, si m est a support borné, soit a tout
I’espace.

Ainsi par exemple:
3 .
— <
mz(z) = ¢ 4nr3 Sf Iz <r
0 si |z|] >r

m n’est autre que l'indicatrice d’une sphére de rayon r centrée a 'origine.

1 z?
ou encore: m(z) = m exp | =5 Vz

qui est la “loi normale” du calcul des probabilités dans I’espace & trois dimensions, o étant I’écart type

* Formule d’Ostrogradski:

D volume fermé de surface extérieure X
JpdivVdv=— [,V .fidc @  normale extérieure 3 ©
\é’v vitesse continue dans D et sur ©
i

continu dans D et sur &

81,‘,'
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Si a est une grandeur locale, on définira alors la moyenne < a > de a au point z de ’espace par:

<a>(z)= /a(:r + z'Yym(z')dz’

Il est souvent avantageux d’imposer & m d’étre continue et indéfiniment dérivable, de fagcon a ce que
< a > le soit également, méme si a ne l’est pas. Ainsi, par exemple:

1
m(z) = C ex —— sijzg]<r
@=Cow (~ig) il
=0si|z|>r
C étant choisi pour que 'intégrale de m soit bien 1.
Mais il existe une trés grande latitude pour choisir m.
# étant une grandeur vectorielle, nous pouvons définir une vitesse macroscopique < # > en prenant la
pondération par m de chacune des composantes u; de u:
<up>= /u;(x + z')m(z")dz’
L’équation de continuité microscopique s’écrit:

0u1 6112 8113

divi= —5—1—1 + 5;; 5—;; =0
Multiplions par m et intégrons dans ’espace:
Z/gi—: m(z')dz' =0
1 4z’

@ élant continue et le domaine d’intégration (ou I'espace entier) étant fixe, les signes de dérivation et
d’intégration commutent, soit:

. 0 ’ Ny
Aza—xi/ui(r+z)m(x)d.r =0

soit ) Qf@ﬁi -0
Ui

div <@ >=0

Arrétons-nous un instant 2 la signification physique de < @ >, la vitesse de filtration. L’intégration de
définition de < @ > est étendue A tout 'espace, méme si en fait @ est nulle dans les grains du milieu poreux.
Donc < @ > est une vitesse moyenne fictive, comme si la totalité de I’espace était offerte a I’écoulement
(pore+solide).

Il ne faut pas confondre < # > avec une vitesse moyenne de 1'écoulement & Dintérieur des pores que
nous définirons ultérieurement.

b) Cas ou le fluide est compressible et I’écoulement permanent

Ceci veut dire que —a—? = 0, c’est-a-dire que 1’équation de continuité microscopique se réduit a div

(pu) = 0, et que de plus le milieu poreux est immobile. Commengons par définir une masse volumique
macroscopique < p >. La masse volumique microscopique p n’étant définie que dans les pores, il nous faut
de méme étendre sa définition & tout I’espace, en convenant que p = 0 dans les grains. Mais attention, p est
maintenant discontinue a linterface solide-liquide.
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De plus, si nous définissions simplement < p > par la convolution de p par la fonction de pondération m,
nous aurions une certaine inconsistance parce que < p > moyen serait tres différent de p local, méme dans
le cas ol p local serait uniforme dans les pores. Le probleme vient de ce que p serait, dans la convolution,
en quelque sorte pondéré également par la porosité.

On préfere donc définir d’abord la porosité moyenne:

_ ' N . _ [0 dansun grain*
<wes /w(z +2)m(z)de chw= { 1 dans un pore*

Ensuite, la masse volumique macroscopique sera définie par:

~

<p>=

o(z + 2 Ym(z")dz' si p=cst,alors < p>=
5 >/p( ym(z’) (sip p>=p)

Nous pourrions enfin garder la méme définition pour la vitesse de filtration que celle du paragraphe
précédent; cependant, cette définition suppose implicitement que le fluide est incompressible. En effet, s’il
ne l’est pas, faire I’addition (ou la moyenne) de vitesse n’a pas de signification physique. Seule la masse est
une grandeur additive (c’est-a-dire vérifiant une équation de continuité).

Nous définirons donc la vitesse de filtration < @ > & partir du flux massique p@ et de la masse volumique
moyenne < p >:

LUy >=

55 /p(.’n + z'Yui(z + 2')m(z")dz’ (3.2.1)

si p est constant, cette définition coiic'de avec la précédente.

Bien que p soit continu dans l’espace, le produit pu 'est tant que le milieu poreux est immobile. Nous
pourrons donc de méme permuter les signes de sommation et de dérivation et écrire ’équation de continuité
macroscopique:

/ div (pit) m(z')dz’ = div [ / pit m(x')dx'] =0

soit, d’aprés (3.2.1): div[<p><u>]=0

c) Cas ou le fluide est compressible, I'écoulement fonction du temps et le milieu déformable

Nous garderons pour < w >, < p > et < @ > les mémes définitions que ci-dessus, c’est-a-dire:

o dans un grai
ez = /w(r + 2)m(')dz'd avecw = {1 dans un gorlen
_ 1 ' N _ fo dans un grain
<p>= <w> /p(x +2')m(a)dz aVeC £ = 1, du fluide dans un pore
_ 1 ' ' N g . _ fodans un grain
<u> = RS /p(x+r)u(z+z)m(z)d;c avec U = {Jduﬂuidedmnnpom

Nous utiliserons I'équation de continuité compléte et 'intégrerons dans ’espace en la pondérant par m:

* 1 s’agit ici d’une porosité efficace non plus au sens cinématique, c’est-a-dire de I’eau qui peut circuler, mais au sens
de la compressibilité: quand on fait varier p, on veut connaitre la fraction du milieu poreux qui contient de 1’eau
compressible. N’en est éventuellement exclue que la pellicule d’eau liée fixée au solide, elle-méme déja tres fortement
comprimée, et que nous supposerons faire partie des grains. En pratique, on utilisera la porosité totale w.
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/ [div (pu) + Qﬂ] m(z')dz' =0
ot 4z’

Cette intégrale est bien nulle car, par définition, le terme entre crochets doit étre nul dans les pores, et
les définitions de p et @ dans les grains font qu’il est également nul dans les grains. Le fait que les dérivées
d’espace ne soient pas définies sur linterface Y, entre pores et grains est sans conséquence sur le calcul de
Iintégrale de volume, car §_, forme un ensemble de mesure nulle.

Bien que le résultat final soit simple, le calcul est plus délicat car, cette fois-ci, les signes de dérivation
et d’intégration ne vont plus commuter simplement.

Le probléme vient de ce que, si le milieu est comprimé, la masse volumique de ’eau va variler, mais le
milizu poreux lui-méme, soumis & ces pressions, va se déformer. La porosité va donc varier, et la frontiére
liquide-solide Y, va se déplacer avec une vitesse que nous appellerons i,. Ces vitesses sont bien sir tres
faibles, et le plus souvent négligeables. Mais nous cherchons ici a établir de fagon rigoureuse les équations
de base.

Ce déplacement a pour conséquence que ni p, ni pi ne sont continues dans I’espace. On montre alors
que sommation et dérivation ne commutent que si la dérivation est prise au sens des distributions, et non
au sens ordinaire (voir Marle, 1967, ou Schwartz, 1961).

. . 0
Etudions maintenant le terme / il

ot

m(z')dz’

4!

Sans parler de distribution, nous allons nous servir de la régle de Leibnitz* (dérivation sous le signe
somme) pour évaluer notre intégrale.

D’aprés la définition de < p >, nous pouvons écrire:

<p><w>= /p(x + z'Yym(z')dz’

Supposons que m est a support borné, et soit D le domaine, centré en z, dans lequel m n’est pas nul; nous
appellerons I la surface extérieure de D. Comme p est nul dans les grains, on peut méme limiter I'intégration
au domaine D occupé par le fluide, et qui est limité par sa surface extérieure X et I'interface fluide-solide,
que nous appellerons ;. Dérivons maintenant I’expression ci-dessus par rapport au temps:

a 6 ! / !
5?[<p><w>] —(Tﬁ[/rﬂlmlp(:c+x)m(r)dx]

Comme D, varie au cours du temps (le milieu poreux se déforme), la régle de Leibnitz nous donnera deux
termes dans la dérivation:

- la dépendance du temps de p,
- la variation au cours du temps du volume d’intégration D;.

Le premier est simplement g—t- [p(z + z"))m(z")dz’
D

1

qui est précisément celui que nous cherchions a estimer au début de ce paragraphe.

Le deuxiéme terme peut étre évalué en remarquant que le volume balayé par un élément de surface d,
appartenant a l'interface fluide-solide £; pendant un temps dt est:

* Regle de Leibnitz

b(z) Y(z,y) est continueen z ety
Si f(z) = / P(z,y)dy ol -5‘1/;- existe et est continue
a(x)

aetb sont dérivables

af db b(=)

da
alors il Yz, b(z)] - o Y[z, a(z)) +]

a(z)

oz Y(z,y)dy



38 Notions de base en hydraulique

i, étant la vitesse de déplacement de I'interface, et 77 la normale a cet interface, orientée vers le fluide.

La variation du volume D; par unité de temps est donc l'intégrale de ce terme sur la surface ¥; (la
surface extérieure ¥ de D, étant fixe):

- / p(z + )i, (z + 2') - 7i(z + 2" )m(z")dz’
z4+2'€Xl;

Notons que ce terme n’intervient que parce que p est discontinu sur I;: si p y était.nul, I'intégrale
disparaitrait.

Nous pouvons donc écrire:
/%
ot

Regardons maintenant le deuxiéme terme, / div (pu)m dz’

m(z')dz’ = % [K p><w>] +/ pii, - im(z')dz’
’ 7Y
T4z

Comme Dinterface £; entre fluide et solide se déplace, la vitesse du fluide & cet interface n’est nulle
qu’en vitesse relative, par rapport a la vitesse de l'interface*:

sur Xy :d—1U,=0 soit U =1,

@ est donc discontinu de part et d’autre de £y, si bien qu’il faut aussi faire intervenir un terme supplémentaire
sur £;. Nous allons calculer une dérivée d’espace de < p >< u >. Intégrons comme plus haut dans un
domaine borné D, et soit D; le domaine occupé par le fluide dans D; E; est 'interface fluide-solide.

D’aprés la définition de la vitesse de filtration (3.2.1):

<p><u;>= /Pui m(xl)dzl
4z’
Dérivons
9 d
— < p>L Ui >l = — u; m(z\dz'
62:;[ p 1= 32 L ()
6 ! !
- oz D pu I+tlm(:c )dz car pu; = 0 dans D - D,
r+x'eD,
Changeons de variable: "=+

m(z" - z)dz”
I”

- _"’_/ "
- al‘ z‘”eDlp !

mais maintenant, seul m est fonction de z. Si nous remarquons que:

* En toute généralité, la relation de conservation de la masse qui existe a l'interface dams un milieu
biphasique est plus riche: elle s’écrit:
p;(ﬁl 'ﬁ"ﬁg -ﬁ)—pg(‘lfg-ﬁ—-ﬁa ﬁ):O
1 et 2 désignant chaque phase, n étant la normale a I'interface ¥ entre 1 et 2, et @, la vitesse de X.
Cette régle suppose que cet interface est une surface singuliere, et néglige les phénomeénes d’interface
tels que la tension superficielle. Elle permet I’échange de matiére a 'interface (par exemple fusion de la
glace, réaction chimique,...). Ici, il est évident que la vitesse du solide ua sur ¥ est égale a u,, donc de
méme #; = #,. Voir Slattery, 1972.
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om(z" — z) _ om(z" — z)

oy = 527 alors:
1 %
_ _/ pu; Om(z" — z) A"
£MeD, z! 61‘,‘

= [, g ol e = 0] = g ] i =} o

De méme, l'interface T; étant un ensemble de mesure nulle, le fait que le gradient n’y soit pas défini est
sans conséquence sur le calcul de l'intégrale. Transformant le premier terme par la formule d’Ostrogradski:

/ 5(?—,7 [pui| m(z" — 2:)] dz" = / pu,-l m(z” — z)n;dz"
Dl 1:., xl' El rll

n; étant la composante dans la direction i de la normale & ¥, orientée du solide vers le fluide. Notez que
Pintégrale est limitée & £, et non a la surface extérieure de D@car si D est assez grand, m y est nul.

On peut maintenant revenir & la variable z initiale, par le changement de variable 2" =z + z':

0 0 N '
a:[( p>< U >] = A —8?, [pUilr+r’} m(z')dz" + L. pu;

m(z')n;dz’
4z

soit, finalement:

/ div (pfi)l m(z')dz' = div [< p>< U >] —/ pii -7l
D Ttz! T,

m(z')dz’
r+z'

Le fait que D soit borné est sans conséquence sur la démonstration, qui reste générale.
En regroupant les deux termes de I’équation de continuité, il vient:
. . 0
div [<p><u>]+5t—[<p><w>]+
PR

mais, comme sur £, nous avons montré que ¢ = i, il ne subsiste que:

p(t, — @)A m(z")dz' =0

div[<p><i>]+ %[< p><w>]=0 (3.2.2)

Notons que ’'on pourrait également définir < w >, < p >, < u > au sens des fonctions aléatoires,
comme les espérances mathématiques, au point z, de I’ensemble des valeurs prises par l’ensemble infini des
réalisations possibles du milieu. Les signes de dérivations doivent étre alors pris au sens des distributions
pour qu’ils commutent avec les signes d’espérances:

da

(%[E(a(z,t))] =E [Ez(z‘t)]

3.2.2. Simplification des notations; terme source

Pour ne pas alourdir les écritures, nous allons maintenant laisser tomber le signe “<>” pour p, w, et
noter U =< @ > la vitesse de filtration tout en nous souvenant que ces grandeurs sont définies, en milieu
poreux, pour l’opération “prise de moyenne” que nous avons amplement commentée.

Nous allons cependant rajouter un terme a ’équation de continuité. En eflet, cette équation exprime
la conservation de la matiére au sein d’un volume fermé. Mais, en hydrogéologie, il faut bien souvent lui
ajouter un terme source, correspondant aux prélevements (ou apports) d’eau que ’on peut réaliser dans le
milieu (forage par exemple). Nous définirons le terme source ¢ qui représentera le débit volumique de fluide
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prélevé (ou apporté s’il est négatif) par unité de volume en chaque point. Le débit massique prélevé sera
donc pgq, ¢ étant défini a I’échelle macroscopique. Ce terme s’ajoute & 1’équation de continuité qui s’écrira,
si on néglige la déformation du milieu:

div (p0U) + %(w) +p3=0 (3.2.3)

3.2.3. Vitesse microscopique moyenne
A partir de la vitesse de filtration U, on peut définir une “vitesse microscopique moyenne” du fluide en
disant simplement que @ est nulle dans les grains. Soit £ une section du milieu poreux, et soitiw., la porosité

cinématique de surface sur :

surface des pores efficaces

Wee = - T
°* ™ surface totale de la section

on définira la vitesse microscopique moyenne par:

U

Wes

=

Cette vitesse n’a cependant pas grande signification physique, contrairement a U qui, par définition,
vérifie I’équation de continuité.

En pratique, on suppose généralement que le milieu poreux est isotrope du point de vue de la répartition
des porosités sur une section, et on admet que w., = w, bien qu’en réalité, w., < w. généralement. La vitesse
microscopique moyenne (ou vitesse moyenne réelle dans les pores) est donc:

U

We

ur =

ou w, est la porosité cinématique

3.3. CHARGE HYDRAULIQUE ET COTE PIEZOMETRIQUE

On définit, dans les cours d’hydraulique, la charge hydraulique en un point A d’un fluide incompressible
et soumis a la seule gravité par la relation:

2
h= il + £ +z
29 pg
u étant la vitesse réelle du fluide au point A, dont la cote est z (comptée positivement vers le haut).
On sait de plus (théoréme de Bernouilli) que la charge ne peut que décroitre dans le sens de I’écoulement,

et que si un fluide est immobile, sa charge est constante dans I’espace.
En milieu poreux, les vitesses réelles sont toujours trés lentes, et on est en droit de négliger le terme de
charge dynamique 5o sl bien que la charge se résume a la charge statique, ou cote piézométrique:
g

P
h=—+412 3.3.1
Py ( )

La cote piézométrique est donc confondue avec la charge. La valeur de la charge est fonction, bien siir,
de Porigine choisie sur 'axe z.

On exprime généralement les charges par rapport au nivellement général (NGT) comptées au-dessus du
niveau moyen des mers, comme les altitudes topographiques.

Si nous voulons mesurer la charge en un point A d’un milieu poreux, il suffit de forer un trou et d’y
descendre un tube ouvert a ses deux extrémités: aprés stabilisation, la cote zp atteinte par ’eau dans le
tube sera égale a la charge h au point d’ouverture inférieur du tube:
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On appelle piézometre ce genre d’ouvrage. La cote zp est égale & la charge dans le piézometre en B,
qui est la méme que celle du point A, car le fluide est immobile dans le tube du piézométre:

P Pg + pg(zg — z
ha=—"24z4="2 p9(zp A)+z
PY P9

Comme on choisit toujours la pression atmosphérique comme pression nulle de référence, on a bien
hA = hB =2zB.

P
A= 2 +zp=hp
P9

Dans une nappe de surface directement alimentée par la pluie, si le fluide était immobile, la charge serait
la méme en tout point du milieu poreux. Donc la cote zp atteinte dans le piézométre définirait la “surface
libre” de la nappe, c’est-a-dire la limite (o0 la pression de I’eau est nulle) séparant le milieu poreux saturé
du milieu non saturé.

Si, dans un milieu saturé, la nappe s’écoule horizontalement et que la charge reste la méme sur une
verticale, la cote de la surface libre reste toujours celle mesurée par le piézométre quelle que soit sa profondeur.
Il n’en est plus de méme si Pécoulement n’est pas horizontal, la charge varie avec la profondeur du piézometre,

et la surface libre est définie par la cote obtenue quand le piézomeétre commence a pénétrer dans le milieu
saturé.

Dans la pratique, on crépine souvent les piézometres sur toute leur hauteur (perforations, fentes, ...),
et on mesure ainsi une “charge moyenne” dans la nappe.

Pour tenir compte de lar compressibilité du fluide, on définit parfois la charge par:

P dp
h=7+ / _ap_ (3.32)
. P(P)g
po = pression a 'origine de I’axe 2, (voir Remson et al.}
p = pression au point de cote z. A9

Nous n’utiliserons pas cette formulation ici.

3.4. SIMPLIFICATION ET INTEGRATION DES EQUATIONS DE NAVIER-STOKES EN
MILIEUX POREUX SCHEMATIQUES

Les équations de Navier-Stokes sont en pratique inapplicables telles quelles en milieu poreux, car on ne
connait pas assez précisément ce qui se passe au niveau microscopique dans les pores quant aux pressions et
aux vitesses. Il faut donc trouver une loi macroscopique valable a I’échelle du domaine élémentaire de milieu
poreux, raliant pression, vitesse et forces extérieures.

Cette loi est une loi expérimentale, la loi de Darcy, que nous étudierons par la suite (Chap. 4).

Nous allons cependant simplifier les lois de Navier-Stokes en nous plagant dans le cas d’écoulements
lents (laminaires) permanents de fluide incompressible. Une fois simplifiées, nous les appliquerons & deux
cas géométriques simples, 1’écoulement entre deux plaques rapprochées et dans un tube cylindrique, selon
I’exemple emprunté a Houpeurt.
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Nous obtiendrons alors une loi macroscopique que nous pourrons comparer a la loi expérimentale de
Darcy.

Notre but n’est pas de démontrer la loi de Darcy, qui est une loi phénomeénologique qu’il faut admettre.

11 est de s’appuyer sur des considérations théoriques pour pouvoir généraliser la loi de Darcy & partir de
P’expérience élémentaire.

Signalons cependant ’existence des travaux de Matheron et Marle déja cités, qui portent sur la justifi-
cation de la loi de Darcy & partir de 'intégration dans un milieu réel des équations de Navier. Matheron a
montré, en particulier, que la loi de Darcy découle de la linéarité des équations de Navier, non de leur forme.

- Simplifications

Pour les écoulements permanents, nous pouvons écrire:

ou’
— =0
ot
et, en utilisant I’équation de continuité ordinaire:
dp
div (pil) = —— =0
(p Bt

Si, de plus, le fluide est incompressible, cette équation se réduit a:

dive=0
Les équations de Navier-Stokes se réduisent alors a:

op i i_
ﬁ ot V2U - pF =0 (3-4.1)

Nous les intégrerons dans trois cas simples.

a) Mouvement paralléle isotherme et permanent d’un fluide visqueux incompressible dans une
fissure d’épaisseur e, sans action des forces extérieures.

La fissure est supposée s’étendre indéfiniment dans le plan horizontal z, y et son ouverture e étre orientée
suivant z.

L’écoulement parallele se fait dans la direction z: la vitesse a une seule composante u,. Il est évident
que la vitesse u; ne dépend alors ni de z, ni de y, mais seulement de z:

uy =u; =0

Ou, _ Ouy _
or ~ dy
Les équations de Navier-Stokes (3.4.1.) se réduisent alors, sans action des forces extérieures (F* = 0) a:
Op 0%u, b4
5; =pu 522 (342)
op
— =0 4.
S (3.43)
op =0 (3.4.4)
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Isolons par la pensée une longueur L de fissure suivant z, suivant une largeur b suivant y, et p ne
dépendant que de z, fixons des conditions aux limites:

p=pn pour z=0
p=p2 pour z=1L p2 < p1

Si nous avions fait intervenir la gravité comme force extérieure, la derniére équation de Navier-Stokes
(3.4.4) serait:

9 _ _
az- Py

et p serait fonction de z. Nous n’en tenons pas compte ici pour simplifier exposé (voir plus loin § c)).

La 187€ équation de Navier-Stokes (3.4.2) ne dépend que de z au 1°¥ membre, et que de z dans le géme,
toutes deux variables indépendantes: le seul moyen d’assurer I'égalité de ces deux quantités est qu’elles
demeurent chacune de leur coté égales a la méme constante C.

L’équation (3.4.2) est donc remplacée par:

dp dp : 8%u, duy
_—= — = t —_ = =
0r dz ¢ ez ~H:2 ¢
L’intégration de ces deux équations conduit a:
{ p = s
Ur = %CZ_;' +C'z+C

comme pour z = 0 et z = e, on doit avoir u = 0, il vient:
1 pa— . .
Uy = 5—&5& (22 —ez) (profil parabolique de la vitesse)
i

Calculons le débit ¢ a travers la fissure pour la largeur b:

€
q:/ bu,dz
o

2
€” pP1— P2
= be—
1= L
Si n fissures paralléles existent sur une hauteur I de terrain par ailleurs imperméable, la porosité de
celui-ci sera alors:

ne
W= —

l

La section totale de terrain A sera bl, et donnera le débit Q = ngq:
we? 1py —po
et & S
Q 12 p4 L

Les équations de Navier-Stokes et Poisson conduisent donc a trouver que le débit Q est proportionnel a
P1 — P2

(3.4.5)

la section de passage A et au gradient de pression et inversement proportionnel a la viscosité p, le

. . s, e cye s . . Wey
coefficient de proportionnalité propre au milieu considéré étant ici S0

b) Ecoulement dans un tube circulaire de rayon r (formule de Poiseuille)

Utilisant la symétrie radiale en faisant apparaitre des coordonnées polaires ayant pour axe la direction
z de écoulement, la premiére équation de Navier-Stokes écrite dans le cas de la fissure devient:
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dp d*u + 1du
dr — H dr?  rdr

L’intégration conduit a:
_IOrip —p,
T8y L

Un milieu poreux constitué d’une matrice imperméable percée de n canaux circulaires de rayon r, tous
paralléles entre eux pour une surface totale A perpendiculaire a la direction des canaux a une-porosité:

nllr?
A

w =

Le débit total du milieu poreux est alors @ = ng, soit:

wr?lp —ps
=A___.__ - - = N
Q=AL BT (3.4.6)

expression absolument analogue & I'expression (3.4.5) du débit du milieu fissuré, le coefficient de proportion-

lité étant ici wr i d we
nalité étant ici — au lieu de —.
8 12

Ces deux calculs suggerent - mais ne démontrent pas - que le débit @ traversant une section droite A de

- . . L, , , . . d
milieu poreux, pour un fluide incompressible de viscosité pu, sous l'effet d’un gradient de pression —I—), sera
de la forme:

k dp
Q=4-
pdz
k étant le coefficient de proportionnalité propre au milieu poreux considéré.

Nous verrons que c’est effectivement le résultat trouvé expérimentalement par Darcy.

¢) Introduction des forces extérieures

Si nous voulons tenir compte des forces extérieures dans les équations de Navier-Stokes, par exemple la
pesanteur, nous allons orienter la fissure plane parallele dans le sens vertical dans le plan (yz). Les équations
de Navier-Stokes s’écrivent alors:

Bp__o Bp_o op _ 0%u,
6z oy 5: Moz M
ce qui conduit, apres intégration de la méme fagon, a:

{P = p+ 8L

120 [B52 + pg] (2, - ex) (3:47)

U,

. . . . . d .
On en conclut que la force de pesanteur pg joue le méme role que le gradient de pression ‘—12 auquel 1l
z
convient de I’ajouter. Le débit s’écoulant & travers le milieu fissuré devient:

2 — P2
Syt (P—L—” + pg) ((pr = p2)/L = pg)

Si nous calculons la vitesse de filtration définie plus haut comme celle d’un fluide auquel toute la section
A du milieu fissuré serait offerte a ’écoulement, nous obtenons:
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En généralisant pour toute direction de I'espace:

2

1
ve (grad p + pg grad z) (3.4.8)

U=-12

—_—
grad z est un vecteur de coordonnées (0,0,1), I'axe z étant vertical orienté vers le haut. Le signe moins vient
de ce que les fluides s’écoulent des pressions élevées vers les pressions faibles, ou du haut vers le bas.

Comme le fluide est supposé incompressible, on peut écrire:

grad p+ pg grad z = pg [grad (% + z)]

=pg grad h

h=L2 + z étant la charge hydraulique que nous avons définie en (3.3.1), soit:
P9

Le role de la pression est remplacé par celui de la charge h.

Mais il faut bien voir qu’au niveau des équations de Navier-Stokes elles-mémes, on peut associer gradients
de pression et forces extérieures:

dp i

5aT "

soit, si les forces F* dérivent d’un potentiel comme la pesanteur: Mp + ngr_a—(TL mais que la définition
d’un potentiel unique L + z suppose que le fluide est incompressible, ce qui n’est pas toujours exact en

milieu poreux. Nous utilisezons alternativement les deux formes.



Chapitre 4

LOI DE DARCY

4.1. L’expérience de Darcy, perméabilité 4.4. Approche probabiliste de la perméabilité
et transmissivité et variabilité spatiale
4.2. Limite de validité de la loi de Darcy 4.5. Mouvement de I'eau sous l’action d’autres
4.3. Mesure de la perméabilité sur champs de force
échantillon

4.1. L’EXPERIENCE DE DARCY, PERMEABILITE ET TRANSMISSIVITE

Le chevalier Henri Darcy, étudiant les fontaines de la ville de Dijon vers 1856, établit expérimentalement

que le débit d’eau s’écoulant & travers un massif de sable peut se calculer: A pha

Q= KAéLf’- (4.1.1)

- A est la section du massif sableux;

- Ah est la perte de charge de I'eau entre le sommet et la base du massif

sableux; L

» K est une constante dépgndant du milieu poreux, baptisée coefficient de
perméabilité par les hydrogéologues ou mobilité par les mécaniciens;

- L est ’épaisseur du massif sableux. : \ a

En divisant les deux membres par A, on fait apparaitre la vitesse U fictive du fluide  la sortie du massif,

comme si toute la section du massif était soumise a ’écoulement. C’est ce que nous avons appelé la vitesse
de fillration.

Q
U=—
A
- . A - . .
De plus, si I'on note i = —— la perte de charge par unité de longueur de milieu poreux traversé,
dénommeée encore gradient hydraulique, on obtient:
U=Ki (4.1.2)

qui est I’expression la plus simple de la loi de Darcy.

a) Perméabilité intrinséque

En se basant sur les équations aux dimensions et par vérification expérimentale, on trouve que la
constante K varie en fait en fonction inverse de la viscosité dynamique du fluide p.
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Nous savons, d’autre part, d’aprés les calculs réalisés & partir des équations de Navier-Stokes, que les
véritables causes du déplacement du fluide en milieu poreux sont les gradients de pression d’une part, et les
forces extérieures d’autre part, soit ici la gravité comme dans ’équation (3.4.8).

La loi de Darcy doit donc s’exprimer sous la forme générale:

- k — —_—
U= —;( grad p+ pg grad z) (4.1.3)

que nous admettrons pour les écoulements permanents et non permanents de fluides compressibles. Notez
que U étant une grandeur macroscopique, il en est de méme de p, p, p, au sens des moyennes <> que nous
avons définies au chapitre 3.*

La perméabilité intrinséque k se rapporte au milieu poreux indépendamment des caractéristiques du
fluide. Elle n’est définie qu’a I’échelle macroscopique.

Sa dimension,  partir de I’équation (4.1.3) est celle d’une surface [L?]:

[Q][ll] — [LST-l][ML—lT—l] - [LZ]

W= G = T T

On Pexprime cependant en:
DARCE, qui vaut 107!2 m? (norme AFNOR).
DARCY, qui vaut 0,987 10~12 m2. C’est la perméabilité d’un milieu qui, sous la différence de pression

d’une atmosphére (760 mm Hg) par cm, laisse s’écouler a travers une section de 1 cm? un débit de 1
cm3/s, pour un fluide de viscosité 1 centipoise.

En pratique, les pétroliers utilisent le MILIDARCY (10~2 DARCY) car les perméabilités courantes des
gisements se situent généralement entre un et quelques milliers de milidarcy. ( oty /W\b)

b) Perméabilité des hydrogéologues

Pour établir la relation entre la perméabilité intrinséque k et le coefficient de perméabilité K utilisé par

les hydrogéologues, il faut exprimer le débit en fonction du gradient de charge hydraulique —AE— = — grad h.

En supposant le fluide incompressible, nous pouvons écrire (4.1.3) sous la forme:
— k —_—
U= - grad (p+ pg=)

soit encore, en remarquant que la charge h est définie par: h = P 1. et en faisant sortir pg du gradient:
P9

- kpg —

U= — grad h (41.4)
En comparant (4.1.2) et (4.1.4), on en déduit que:
k
k=2
i

Notons que les deux formes de la loi de Darcy:

- k —_—
U= —;[grad p+pg grad 2z]=~K grad h

sont strictement équivalentes, mémes pour les fluides compressibles, si 'on adopte pour définition de la
charge:

* On peut montrer en particulier que la loi de Darcy s’applique au gradient de la pression moyenne, grad < p >, et
non 4 la moyenne du gradient de pression, < grad p >. Voir Marle, 1967.
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P d
h=z+ 'l
o P9

que nous avons déja citée plus haut. Nous ne nous en servirons cependant pas.
La dimension de K est celle d’une vitesse:

(LM L-3)LT?)

K= =71

= [LT7]
Elle s’exprime généralement en m/s.

Les coefficients de perméabilité des couches aquiferes évoluent entre 10~° et 10~% m/s.

Ce coefficient de perméabilité des hydrogéologues est fonction du fluide, ce qui n’est pas trés génant
car on s’intéresse toujours a ’eau, mais aussi de sa viscosité. Or la viscosité varie sensiblement avec la
température. La figure suivante donne la variation de la viscosité de I’eau avec la température, ramenée a la
viscosité mesurée a 20°, qui vaut 1,002 centipoise, ou encore 1,002 103 Newton.s/m? (ou kg/m.s).

wp20 18 1 centipoise = 10~2 Pa.s
' \ Les valeurs sont mesurées a la pression atmosphérique.
1.6 \ Viscosité p en centipoises
\ Température a la pression
1,4 .
' \ °C atmosphérique
- N 0° 1,787
N 10° 1,310
1,0 20° 1,002
40° 0,653
08 s 60° 0,466
0.6 80° 0,355
0 10 20 30 100° 0,282

Température (°C)

Malgré I'hypothése d’isothermie du milieu poreux que nous avons faite, il faut y prendre garde pour les
nappes trés superficielles (nappes alluviales par exemple) ol les variations climatiques entre ’hiver et I’été
engendrent des variations non négligeables de la perméabilité: elle est réduite de 40% si la température de
’eau passe de 25° 4 5°. Nous en reparlerons également pour les problémes de géothermie.

Pour comparer perméabilité intrinséque et perméabilité des hydrogéologues, il est bon d’avoir & ’esprit

la correspondance suivante: pour de I’eau & 20°C, 1 milidarcy donne:
10715 x 10® x 9,81
1,002 x 10-3 =S 9
soit 1 milidarcy proche de 10~% m/s pour de 'eau a 20°C) on 2nore A M:mu() 4 '{0 m -

0,987 = 0,966 10™3m/s

c) Perméabilité et porosité

D’apreés I'analogie de ’écoulement en milieu fissuré ou en conduite circulaire, on a cherché & relier
perméabilité et porosité, ou dimension des pores.
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» kpg —

Loi de Darcy U= ——Z‘g grad h

Milieu fissuré U=- 19, grad h
2 —_—

Milieu tubulaire U= -“’—'8—#—”2 grad h

. . . we? wr? . .
On pourrait donc penser relier k 3 —— ou = malheureusement, toutes les tentatives faites dans ce

sens ont conduit a des résultats médiocres. Les formules empiriques les plus connues sont celles:

w3

- de KOSENY-CARMAN: k=csma=oe SI1—w)?

ou S, est la surface exposée au fluide par volume unité de milieu solide (et non pas poreux), et w la porosité
totale.

- de HAZEN: log,o k = 2 logyo dio—3
ol dyg est le “diametre efficace” des grains du sol (voir § 2.1.e), k est en cm? et djo en cm.

- de BRETJINSKI pour les sables: w=0,117VK (K en m/j).

d) Tenseur de perméabilité

L’expérience du perméameétre de Darcy est réalisée en observant un écoulement unidirectionnel. Quand

nous sommes passés de U = Ki a U=-K grad h, nous avons déja admis que l'on pouvait généraliser
la loi pour ’espace a trois dimensions. Et ce faisant, nous avons implicitement admis que le coefficient de
perméabilité K, ou encore la perméabilité intrinséque k, étaient des propriétés isotropes du milieu poreux,
indépendantes de la directiod de I’espace.

Or, on sait a priori qu’il n’en est pas ainsi. Par exemple, les couches sédimentaires sableuses ou argilo-
sableuses ont, du fait méme de leur stratification, une perméabilité horizontale bien supérieure a leur per-
méabilité verticale.

1l en est de méme des milieux alluviaux formés généralement de couches ou lentilles alternées de sables
et graviers propres et de passées argileuses. Pour ces milieux, la direction du gradient de charge et celle
de la vitesse d’écoulement ne sont plus en général confondues: 1’écoulement va avoir tendance a suivre les
directions de perméabilités les plus grandes.

Direction de la
vitesse
1

Direction du gradient de charge
On est donc amené & considérer la perméabilité comme une propriété tensorielle, ce qui est simplement
la traduction mathématique de cette observation.

On définit alors un tenseur de perméabilité Fouk (f = E‘ii) que I'on admettra étre un tenseur du
p
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2°M€ ordre*, et symétrique™ (c’est-a-dire que k est une matrice de 9 coefficients, symétrique par rapport a
la diagonale):

kzz kry ke kz:y = kyr
K = |kyr kyy ky, avec ke, = ki
kzr kzy kzz kyz = kzy

Certains auteurs ont cherché a le démontrer a partir de modéles représentant le milieu poreux (modéles
de tubes capillaires, de fissures, ...). Ces démonstrations justifient cette généralisation par ’analogie, mais
ne la démontrent pas. Matheron a cependant établi, a partir de I'intégration des lois de Navier, la symétrie
du tenseur de perméabilité (voir plus loin).

Nous écrirons donc:

U=-K grad h (4.1.5)
Lk — —
U=- ;[ grad p+ pg grad z] (4.1.6)

Explicitons par exemple cette derniere relation en calculant les trois composantes de la vitesse U, de la facon
la plus générale:

k.» Op kzy Op ke, (61) )
Up = ——— —

p Oz
U, = kzy Op kyy Op  ky, (6p )

Fyy 417
p Oz n Oy " (41.7)

On constate bien que cette écriture tensorielle permet, & un gradient dans une direction z donnée, de faire
naitre des composantes de I’écoulement sur les directions perpendiculaires y et z, ce qui est conforme &

I’expérience. Cette relation a été écrite en utilisant six composantes distinctes, en tenant compte de la
symétrie.

Cette écriture un peu lourde peut étre simplifiée en utilisant de nouveaux axes orthogonaux X,Y, 7,
déduits des premiers par une rotation, tels que le tenseur de perméabilité se réduise a ses composantes
diagonales. Mathématiquement, XY Z sont les directions pour lesquelles 1’écoulement est effectivement
paralléle au gradient de charge (en pratique, une direction orthogonale & la stratification et deux directions

* On définit un tenseur du 2°™€ ordre par la régle de transformation des composantes du tenseur lors
d’une rotation de repére cartésien des coordonnées: si, dans un repére (z,z,z3), les composantes du tenseur
sont K;;, les composantes K|; dans un repére (zz523) seront:

I\'fj = E E oS @y €08 amj Nim

m

ol ay; est I'angle de I’axe ox; avec I’axe oz. On peut établir facilement que c’est bien ainsi que se transforment
les composantes du tenseur de perméabilité, a partir d’un raisonnement sur les flux.

** On peut montrer macroscopiquement que la symétrie de ce tenseur est une condition suffisante, au moins pour
rendre compte des observations. Dans un milieu stratifié, il est en effet évident que les directions paralltles et
perpendiculaires & la stratification sont des directions privilégiées de I'’écoulement, pour lesquelles le gradient de charge
et la vitesse d’écoulement sont de nouveau confondues, c’est-a-dire que les composantes du tenseur se réduisent i la
composante diagonale. Or on sait qu’une matrice symétrique est une condition suffisante pour que ses valeurs propres
soient distinctes et les directions propres orthogonales. Mais pour démontrer que cette condition est nécessaire, il
faut faire appel au 17 et 2°™€ principes de la thermodynamique.
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paralléles a celle-ci): ces directions sont appelées directions principaies d’anisotropie du milieu. Dans ces
axes, le tenseur k se réduit donc & trois composantes diagonales:

- |kzz 0 O
k=0 ky O (4.1.8)
0 0 k..
et les relations (4.1.7) s’écrivent:
kzz Op
Uz = _7 ox
kyy Op
Uy=-—2 — 4.1.9
y U ay ( )
k.. Op . . . . .
U, =- 5 + pg (si z est toujours la direction verticale)
T z

En pratique, on distinguera, dans les milieux sédimentaires a stratification plus ou moins horizontale,
deux perméabilités: une perméabilité verticale k.. et une perméabilité horizontale krr = kyy. Le rapport

krz

d’anisotropie
kZ z

est généralement compris entre 1 et 100.

Tout ce que nous venons de dire se transpose pour la perméabilité K, qui est égale a la premiére a un
facteur scalaire prét. Pour la suite de I’exposé, nous supposerons toujours nous étre placés dans des axes
paralléles aux directions principales du tenseur de perméabilité, z étant toutefois la verticale (sans quoi le

terme pg grad z dans (4.1.6) se trouve distribué sur les trois équations en XY Z de (4.1.9), alourdissant
Iécriture). Cette difficulté disparait si le fluide est incompressible, car on peut utiliser la charge h.

Notez que si I’anisotropie est uniforme (la méme en tout point de Iespace), on peut se ramener a un
milieu isotrope par anamorphose sur les coordonnées (voir § 7.1.6).

e) Milieu fissuré

11 existe actuellement deux approches des écoulements en milieu fissuré:
- la modélisation de I’écoulement prenant en compte les fissures une a une,
- la modélisation par milieu continu équivalent.

Dans une fissure élémentaire (Louis, 1974), les lois de I’écoulement s’écrivent, en résumant cet auteur:
régime laminaire: V = Ky Jy
régime turbulent: V = K} J§

ou V = vitesse moyenne d’écoulement dans la fissure, c’est la vitesse d’un fluide se déplagant de maniére
uniforme sur tout le profil et produisant le méme débit *

K; = conductivité hydraulique de la fissure, [LT-1)

K} = conductivité turbulente de la fissure, (LT

J; = projection orthogonale du gradient hydraulique sur le plan de fracturation
a = degré de non-linéarité sur le plan de I’écoulement (0,5 < o < 1)

Le passage de I’écoulement laminaire & I’écoulement turbulent se fait en fonction du nombre de Reynolds,
R., d’une part, et de la rugosité relative, R,, de 'autre.

Le nombre de Reynolds, sans dimension, est défini pour une conduite cylindrique par:

*Nous avons montré au § 3.4 que le profil réel de vitesse, en régime laminaire, est parabolique si la fissure est lisse.
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vd V = vitesse moyenne du fluide
R, = -2F d = diamétre de la conduite (4.1.10)
¢ % = viscosité cinématique

En hydraulique classique, les écoulements sont laminaires pour R, < 2000, turbulents pour R, > 2000.

Pour une fissure plane, on remplace le diamétre de la conduite par le “diamétre hydraulique” défini par:

S S = section d’écoulement de la fissure
Dp=4- AR . . )t (4.1.11)
P = périmeétre extérieur de cette section d’écoulement
Pour une fissure trés étendue, D), est égal & deux fois son ouverture.
La rugosité relative, sans dimension, est définie par:
R, = € = hauteur moyenne des aspérités dans la fissure (4.1.12)
- D,l Dy, = diameétre hydraulique (4.1.11) o

En fonction de R, et R,, Louis définit empiriquement cinq régimes d’écoulement, dont les domaines de
validité sont représentés sur la figure ci-dessous:

R
r [ \ m 11
Loi de type 4 \ Loidetype5 4
01 A\
A w
A
AN
0033 AEED GEEED GHNED BRIl SUED | GMND GED SN 'I-- o) aue e conee jpwss aEe |oind =
[N
|
] \
Loi de type 1 l \‘ Loide type 3
0,01 + N
) §
I 1 [
| ALY
H AN
1
1 N\
L N
1 | N\
Loi de type 2 3
' k‘\h
0,001 I ! >
102 103 2300 104 105

e

Les lois en régime stationnaire de 1’écoulement pour chaque régime sont fonction de I’ouverture e, de la
viscosité cinématique p/p, de la rugosité relative R, et du gradient de charge dans le plan de fissure Jy:

S pge’
Type 1: laminaire lisse: V=- (T2—) Jy (4.1.13)

i

g (20e°\'* v
: turbulent lisse: == | — [ =

Type 2: turbulent lisse 1% 0079 ( r ) Jy (4.1.14)
Type 3: turbulent nuageux: (4\/— log Rf) ol (4.1.15)
Type 4: laminaire rugueux: ( > J 4.1.16
yP & 124( 1+8 s8Ry ) ! (4.1.16)
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1,9
Type 5: turbulent trés rugeux: V =-— (4@ log -R—f) VI (4.1.17)
Dans ces expressions, il s’agit du log Népérien.

Si enfin la fissure n’est pas entierement ouverte (les deux levres se touchent par endroits), il faut multiplier
les 26™M€S membres des expressions (4.1.13) & (4.1.17) par le “degré de séparation de la fracture” F:

surface ouverte de fracture

(4.1.18)

~ surface totale de fracture

Pour un systéme de fissures paralléles et continues, en régime laminaire, on peut calculer la conductivité
hydraulique équivalente du milieu par:

K= %1{, +Knm (LT (4.1.19)
b = distance moyenne entre fissures,
K; = conductivité hydraulique de fissure (4.1.13) ou (4.1.16),
K, = perméabilité de la matrice rocheuse [LT~'].

K est une perméabilité directionnelle, c’est-a-dire donnée pour un gradient hydraulique paralléle au plan
de fissure.

Si le systéme de fracture est discontinu (les fissures sont de longueur finie et ne sont pas connectées),
Vessentiel du transfert se fait dans la matrice, les fissures servant de “courts-ciruits”. Louis propose, pour la
conductivité directionnelle équivalente:

P 1 14 L
K=K, [1+—2- (L-Z_. L)] (4.1.20)
dans lequel £ = extension moyenne des fissures,
L = distance nfoyenne entre deux fissures non connectées.

Ces perméabilités sont les perméabilités directionnelles du milieu continu équivalent. Dans le cas de

fissures continues, la perméabilité directionnelle continue du milieu équivalent est donc fonction de I'ouverture
de la fissure au cube:

F = degré de séparation de fracture (4.1.18)
C =1, régime de type 1
C =1+ 8,8R1® régime de type 4

;3 Fgp
12ubC

Maini et Hocking (1977) donne ainsi I'allure de I’équivalence entre la perméabilité d’un milieu fissuré et
d’un milieu poreux. Par exemple, le débit s’écoulant & travers une section de 100 m d’épaisseur de milieu
poreux de perméabilité 107 m/s pourrait étre amené par une seule fissure, dans une roche imperméable,
dont l'ouverture ne serait que de 0,2 mm ! Cela montre I’extréme importance d’une seule fissure, méme
trés peu ouverte, dans I’écoulement. La figure de la page suivante, empruntée a4 Maini et Hocking, donne la
relation entre I'ouverture de la fissure unique considérée, la perméabilité du milieu équivalent et I’épaisseur
de la section de milieu continu équivalent a cette seule fissure.

Pour modéliser ’écoulement dans un milieu formé de plusieurs systémes de fractures conductrices, deux
possibilités sont donc offertes:

e L’approche milieu continu: chaque famille de fissures définit une perméabilité directionnelle, formant
donc un tenseur de perméabilité. Connaissant l'intensité et la direction de ces perméabilités, on est donc
capable de calculer les directions d’anisotropie du tenseur et les perméabilités dans ces directions.
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Par exemple, dans le plan, deux systémes de fractures ayant la méme perméabilité directionnelle, mais
se recoupant suivant un angle non droit, donne les directions principales d’anisotropie suivantes:

Bray, cité par Maini et Hocking, a établi les expressions suivantes pour calculer les directions d’anisotropie
et les perméabilités principales du milieu équivalent:

Y = % arctan (—-SLQQ—GK—;)
cos 20 Kb

_ K4 K} sin’©
" Ka sin®y; + K sin (© =)

K;

ou K, et K} sont les perméabilités directionnelles équivalentes des réseaux de fissures a et b, comme le
montre la figure suivante empruntée aux mémes auteurs.
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fissure b, perméabilité Ky

Fissure a
Perméabilité Ky

Cette approche milieu continu est alors valable & une certaine échelle d’observation: on ne représentera
pas exactement les vitesses d’écoulement ou les charges dans chaque fracture, mais une valeur moyenne de
ces grandeurs sur un ensemble de fractures.

La définition des perméabilités de chaque famille de fractures peut étre envisagée de deux fagons:

- soit en mesurant (ou estimant) les propriétés géométriques moyennes des fissures (ouverture, espacement,
rugosité. .. ) et en utilisant les expressions données ci-dessus,

- soit en mesurant directement, par des essais in situ, les perméabilités K; des fractures élémentaires par
des injections d’eau.

e A contrario, 'approche “milieu discontinu” consiste & prendre en compte soit chacune des fissures élé-
mentaires du systéme, soit des fissures équivalentes remplagant plusieurs fissures élémentaires d’une famille.

Le modéle est alors constitué de “nceuds” ou se recoupent les fissures, joints par des plans ot s’écoulent
les fluides selon les lois directionnelles données plus haut. On calcule des charges aux nceuds, des vitesses
dans les plans. Louis montre qu’en régime laminaire les écoulements sont a potentiels, les vitesses étant
obtenues par dérivations du potentiel:

'=~K f (ﬂ + z)
Py

Si cette approche permet de représenter plus fidélement les écoulements a 'échelle fine, en revanche, elle

demande de connaitre avec exactitude la position dans I’espace et les propriétés de chacune des fissures une
a une, ou regroupées par famille.

Nota: Ecoulements transitoires dans les milieux fissurés.

Nous avons supposé jusqu’ici que 1’écoulement de ’eau était stabilisé ou permanent, c’est-a-dire ne vari-
ant pas avec le temps. Si I'on fait intervenir des écoulements transitoires, une des propriétés fondamentales
des milieux fissurés apparait: il s’agit de la double porosité.

En effet, dans le cas général, le milieu fissuré peut étre considéré comme la coexistence de deux systémes
de vides: les ouvertures de fissures et la porosité inter-granulaire des blocs de roche que séparent ces fissures.
La définition de la perméabilité équivalente du milieu que nous avons fournie en (4.1.19) fait d’ailleurs
référence a ce double systéme puisqu’on additionne les perméabilités K des fractures a la perméabilité K,
des blocs.

En régime permanent, cette double porosité et cette double perméabilité sont prises en compte par
la notion de perméabilité équivalente. Mais en régime transitoire, on congoit bien que la transmission
des variations de pression soit beaucoup plus rapide dans les fissures que dans la matrice des blocs, si
K; > Km. On sera donc amené & définir, dans un volume représentatif élémentaire, 'existence de deux
pressions différentes, I'une dans les fissures et I’autre dans la matrice, accompagnée d’un terme d’échange de
masse entre la porosité inter-granulaire et la porosité de fissure.

Ces problémes ont été étudiés en particulier en France par Lefevre du Prey, malheureusement décédé ac-
cidentellement, et & I’étranger par divers auteurs, dont C. Braester, J.E. Warren, P.J. Root et G.I. Barenblatt
(Union Soviétique). Ce dernier propose une loi de mouvement de la forme:
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. [k 0 0
div [-;f grad p; + 18, ) grad pj] =8, a?;!
. R IV .Kj[,t
ou ks est la perméabilité intrinséque de fissure: ky = e

est la pression dans les fissures,

parameétre caractéristique du degré de fissuration, ol a caractérise l'intensité du transfert
entre blocs et fissures,
Bo coefficient de compressibilité élastique habituel de I’ensemble eau + milieu poreux (voir
Chap. 5).
Ceci conduit en fait a adopter une loi de Darcy particuliére dans les milieux fissurés, qui'dépendrait du
temps et s’écrirait:

JESS

k
U= _7f grad py — nﬂo% grad py

f) Transmissivité

Si la nappe d’eau souterraine circule dans une couche de puissance e,

et que I'on veuille calculer le flux transitant dans la direction d’écoulement z dans la couche pour une largeur
unitaire dans la direction perpendiculaire 4 la figure, on obtient:

Q/I:/ ﬁ.ﬁdz=/ U,dz

n étant la normale a I’axe oz, et U; la composante de la vitesse dans la direction z.
Supposons que z soit la direction principale d’anisotropie, c’est-a-dire que les deux autres directions
soient dans le plan de la couche (z,y). Alors, en tout point M de o2:

U= —-fM grad h

?M étant le tenseur de perméabilité dans le plan zy passant par M, et grad h le gradient de charge dans
ce plan. Supposons de plus que ce gradient soit constant sur la transversale oz. Alors:

c——
Q/l = —grad h/ Kpdz

— e __
Cette intégrale a été baptisée la transmissivité, T = / Kdz.
o

Si R est isotrope et constante suivant oz:

T=NKe

T s’exprime en m?/s et est trées fréquemment utilisé pour les nappes souterraines, qu’elles soient ou non
horizontales.
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4.2. LIMITE DE VALIDITE DE LA LOI DE DARCY

La seule justification des différentes généralisations que nous avons données de la loi élémentaire expéri-
mentale de Darcy est en fait 'expérience: on constate que les calculs réalisés grace a cette loi généralisée
s’accordent avec I’observation.

Cependant, du coté des faibles gradients comme du c6té des forts gradients hydrauliques, il existe des
distorsions 2 la loi, & vrai dire rarement rencontrées en pratiques.

a) Du c6té des faibles valeurs du gradient hydraulique

. : Dans le cas des argiles compactes, la loi de variation la
f ‘ plus générale pour les faibles valeurs du gradient est donnée
par la figure ci-contre (Jacquin, 1965):
- en-dessous d’une valeur i,, la perméabilité est nulle;
- entre i, et i1, la relation n’est pas linéaire;
- la proportionnalité correspondant a la loi de Darcy ne
s’applique que pour i > 7, s’exprimant par une for-
mule de la forme U = K (i — i2).

Loi de Darcy
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b) Du c6té des fortes valeurs du gradient hydraulique

Lorsque ’on augmente le gradient hydraulique, on observe ezpérimentalement qu’il n’y a plus propor-
tionnalité entre ce gradient et la vitesse de filtration:

grad h = aU + BU?

al: pertes dues au frottement visqueux sur les parois de la matrice,
BU?%:  pertes dues & I'inertfe du fluide (dissipation d’énergie cinétique dans les pores: les lignes de courant

convergent et divergent trés rapidement; il s’agit de pertes analogues aux pertes dans les coudes ou
les étranglements des tubes). :

Le gradient hydraulique-limite au-dela duquel la loi linéaire de Darcy n’est plus utilisable, dépend
essentiellement du milieu considéré.

Pour tenter de ramener ce gradient-limite 4 une propriété intrinséque du milieu, on définit parfois
un “nombre de Reynolds en milieu poreux”, sans dimension, par:

R = UVkp U = vitesse de filtration,

T Vk =racine carrée de la perméabilité intrinséque, dimension d’une longueur.
R = Udp p, 4 = masse spécifique et viscosité dynamique du fluide,

e u d = diamétre moyen des grains, ou diameétre efficace djo.

- o . d
Rappelons que la définition exacte du nombre de Reynolds dans une conduite circulaire est u_p.

(u: vitesse moyenne du fluide dans la conduite de diameétre d). Vu la différence de définition, il ne faut gas
chercher a comparer ces nombres entre eux.

En pratique, on admet que la loi de Darcy est valable si le nombre de Reynolds en milieu poreux
(en prenant le diamétre moyen des grains) est inférieur & une limite comprise entre 1 et 10, auquel cas
’écoulement est purement laminaire & I'intérieur des pores.

De 10 2 100 commence un régime d’écoulement de transition ou les forces d’inertie ne sont plus
négligeables, et ol la loi de Darcy ne s’applique plus.
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Au-dela de 100, le régime d’écoulement est turbulent a l'intérieur des pores, et la loi de Darcy
s’applique encore moins.

En pratique, a4 'exception du régime karstique et du voisinage immédiat des ouvrages captants,
et pour les vitesses effectives réelles d’écoulement, le nombre de Reynolds critique n’est pas atteint et on
reste dans le domaine laminaire. Il en résulte que, méme au voisinage d’un puits, I’ensemble des pertes de

charge étant en série, les termes quadratiques n’apparaissent que dans une zone limitée et généralement a
écoulement facile (massif de graviers filtrants) et n’ont qu’un faible poids.

Comme valeur du gradient-limite, on peut noter la formule empirique de Sichardt:

o
TV

K étant exprimé en m/s. Voir en particulier les travaux de Chauveteau.

c) Loi de Darcy en régime transitoire.

La loi de Darcy, expérimentale et surtout théorique, s’établit pour les écoulements permanents (in-
dépendants du temps). Nous avons déja dit, au § 4.1.e ci-avant, qu’en milieu fissuré le phénomeéne de double
porosité entraine I’existence d’un terme transitoire nouveau dans la loi de Darcy.

Il est également possible de montrer, sur le plan théorique, qu’en milieu poreux, un terme supplé-
mentaire apparait dans la loi de Darcy si le régime est transitoire.

Revenons un instant aux équations de Navier-Stokes. Nous avons vu, au § 3.4, que sur des milieux
théoriques, en régime permanent, on passe du cas ou les forces extérieures sont nulles a celui ot elles existent
en rajoutant simplement le terme pF; au gradient de pression 5—13- En reprenant les équations complétes de

I
Navier (3.1.2), on s’apercoit que les termes transitoires pa—t' Jjouent dans les équations le méme réle que les

forces extérieures. Si donc nous écrivions en permanent:

- k
U= —;( grad p+ pg grad z)

nous devrions écrire, en transitoire:

- 3 P oU
U=-= d d --£ 22
”(gra p+pg grad z 5 (%)
Le facteur % pour le terme transitoire provient de l'intégration, dans le VER, du terme transitoire

. . Ou , . . } P . .
microscopique* p—aT. Cependant, ce terme supplémentaire est en pratique toujours négligé, car U étant petit

en milieu poreux, — est négligeable devant les autres termes, sauf peut-étre pendant des temps de Pordre
de la seconde quand s’ébranle ’écoulement en milieu poreux.

4.3. MESURES DE LA PERMEABILITE SUR ECHANTILLON

a) Milieux a forte perméabilité.

Si la perméabilité du milieu n’est pas trop faible, on peut employer une différence de charge engendrée
uniquement par la pesanteur.

- Perméamétre a charge constante: On reprend l’expérience de Darcy:

* La démonstration théorique se fait en réécrivant d’abord les équations de Navier en dérivées partielles du temps au
lieu de dérivées totales.
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Si A est la section de I’échantillon de milieu
poreux, la loi de Darcy s’écrit:

Q=-RAgrad h

soit:

K= QL
“ ((hy + L = h2)A)

- Perméamétre & charge variable: Si le coefficient de perméabilité est inférieur a 10~% m/s, le per-
méamétre a charge constante doit étre remplacé par le perméamétre a charge variable ol une charge plus
importante est donnée au moyen d’un long tube de faible section a.

b) Milieux & faible perméabilité
Q

An

On peut écrire:

Q=K A% (loi de Darcy)
dh - .
Q= —a—r (Q: variation du volume par unité de temps)
dh A dt
. . _— = = gt . . v l
d’ol W . K 7 (A: section de ’échantillon)
h AK

— =l -t,
Log 7~ o ¢ to)

En portant sur un graphique log h en fonction du temps, on
obtient une droite dont la pente est proportionelle a K.

Si I’on veut mesurer des perméabilités plus faibles, on
appliquera des différences de pression plus importantes a aide
de pompes et on mesurera les pressions a I’amont et a ’aval
pour différentes valeurs du débit Q. La pente de la droite don-
nant Q en fonction de Ah permet de calculer la perméabilité.
On mesurera bien souvent la perméabilité & un gaz, plus ac-
cessible. Connaissant p et u, on peut passer de I'une a l'autre.

Les diverses mesures effectuées au laboratoire n’atteignent pas la perméabilité in situ, qui peut étre
assez différente. Pour mesurer celle-ci, on utilise la réaction du terrain & un pompage ou & une absorption
artificielle, selon que 1’on a affaire a un terrain perméable ou imperméable.

Cette réaction sera étudiée en détail plus loin. On peut aussi atteindre théoriquement cette perméa-
bilité  ’aide de traceurs tels que la fluorescéine introduits dans I’aquifere. En fait, les traceurs, trés sensibles
aux hétérogénéités et sujets a adsorption, ne permettent pas d’obtenir des valeurs moyennes correctes.
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¢) Valeurs de la perméabilité

La perméabilité d’une roche est, bien sir, due a I’existence d’une porosité efficace, c’est-a-dire a
I’existence de vides interconnectés.
De méme que I'on a défini une porosité d’interstice et une porosité de fissure, on pourrait distinguer
deux types de perméabilités (inter$ ":Ré‘lle et de fissure) que I'on désignait autrefois par:
- perméabilité en petit,
- perméabilité en grand,
la taille du VRE permettant de les définir n’étant pas la méme. ‘
La tendance actuelle est de réserver le terme de “coeflicient de perméabilité” aux milieux a porosité
d’interstice, et celui de “conductivité hydraulique” & ceux & porosité de fissure, la définition de ces deux

constantes étant cependant la méme. Dans la pratique, il est difficile de séparer sur le terrain les deux types
de perméabilité qui peuvent coexister.

Pour les roches déiritiques d’interstice, la perméabilité est fonction de la taille des grains:

- graviers sans éléments fins: K~ 1072 m/s

- sables non argileux et graviers: 107231075 m/s
- sables fins et argileux: 107% 3 107° m/s
- argiles franches 107° a2 1073 m/s

La distinction entre roches perméables et imperméables est arbitrairement faite 2 10™° m/s. Les
argiles sont imperméables malgré leur porosité totale importante, a cause de la finesse de leurs pores leur
donnant une porosité efficace tres faible.

Les grés ont une perméabilité analogue a celle des sables, s’ils ne sont pas trop cimentés. On a
mesuré, par exemple, 107° m/s pour les grés vosgiens en Lorraine. Si les grés sont a ciment calcaire, celui-ci
peut étre dissous du fait de la présence de CO, dans les eaux, augmentant ainsi la perméabilité.

Pour les roches a porosité de fissure, les valeurs de conductivité hydraulique sont extrémement
variables, mais généralement inférieures a celles des milieux détritiques.

1l faut noter que la perméabilité peut varier, dans une roche fissurée, avec la contrainte par fermeture
des microfissures. Inversement, une pression élevée dans une fissure peut “ouvrir” la fissure et augmenter la
perméabilité, sans parler de la fracturation hydraulique, qui consiste a créer des fissures dans la roche en y
injectant un fluide & haute pression. Voir les travaux de L. Gale et P. Witherspoon, ou F. Cornet.

1l faut mettre a part le cas des calcaires et des roches solubles ou la dissolution par le CO, élargit
les fissures dans la mesure ou ’eau circule. On aboutit trés rapidement a des vides importants ou circulent
de véritables rivieres souterraines: c’est le régime karstique.

4.4. APPROCHE PROBABILISTE DE LA PERMEABDILITE, ET VARIABILITE SPATIALE

La définition de la perméabilité en tant que fonction aléatoire demande un changement d’échelle
qu’a proposé G. Matheron en 1967, en se référant aux travaux de Schwydler (1962). En effet, on ne peut
parler de perméabilité ponctuelle comme nous ’avons fait pour la porosité car, & ’échelle microscopique,
la loi de Darcy, que sous-entend la notion de perméabilité, ne s’applique pas a I’écoulement: c’est la loi de
Navier-Stokes qui commande la relation entre charges et vitesses.

On montre alors que la loi de Darcy découle simplement de la linéarité des équations de Navier, non
de la forme de cette loi. On montre de plus que, dans 'hypothése d’un milieu poreux homogéne (stationnaire
et ergodique), le tenseur des perméabilités macroscopiques ne dépend que des propriétés géométriques du
milieu poreux (mais malheureusement pas de la seule loi de distribution de la porosité ponctuelle).

Cette perméabilité macroscopique dépend donc conceptuellement des propriétés géométriques mi-
croscopiques du milieu poreux, que nous avons définies comme des fonctions aléatoires: on peut donc
conceptuellement définir une perméabilité comme une nouvelle fonction aléatoire, ayant sa propre loi de
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distribution et de “conciliation”, et donc une définition ponctuelle, bien que macroscopique. On appellera
“variable régionalisée” une propriété ainsi définie.*

Cette conception probabiliste nous amene donc directement & nous interroger sur la variabilité spa-
tiale de la perméabilité (ou de la transmissivité, si 'on s’intéresse aux problémes d’écoulement & deux
dimensions). Notez que ces préoccupations sont récentes car, jusqu’a ces derniéres années, les méthodes de
résolution des problémes d’écoulement étant analytiques, on faisait simplement I’hypothése que perméabilité

(et porosité) étaient uniformes dans I’espace. Les méthodes numériques permettent aujourd’hui de dépasser
ce stade.

Les données de transmissivités ou de perméabilités sont généralement peu nombreuses dans les
nappes. L’idée s’est cependant peu a peu fait jour que la distribution des transmissivités dans l’espace
n’est pas quelconque, mais suit une loi lognormale. On peut citer plusieurs auteurs, en particulier J. Jetel
et J. Krasny (1974) qui se réferent également & Law (1944), Walton et Neill (1963), Krumbein et Graybill
(1965), Farengolts et Kolyada (1969), Ilyin, Tchernichew, Dzektser et Zilberg (1971), Jetel (1971, 1972) qui
ont étudié la répartition spatiale des perméabilités ou des transmissivités dans de trés nombreux bassins. Il
faut aussi citer la trés intéressante étude de D. Rousselot (1976) qui cherche & montrer la validité de cette

loi de distribution lognormale dans 35 unités hydrogéologiques frangaises, allant des alluvions & des milieux
fissurés, sédimentaires ou cristallins.™

Réfléchissons un instant sur la signification de cette loi. Si les transmissivités sont distribuées de
fagon lognormale dans un aquifere, peut-on en conclure que 1’on peut les considérer comme les réalisations
de FA stationnaires et ergodiques ? Pas exactement. Si I’'on accepte les notions de milieu poreux aléatoire,
de stationnarité et d’ergodicité, alors on doit pouvoir déduire la loi de distribution de la FA de la loi spatiale
observée. Donc ’existence de la loi spatiale & un point d’appui ne met simplement pas en défaut ’hypothése
aléatoire. Mais, pour parler de variables régionalisées, nous avons dit qu’il faut également qu'il existe une
loi de “conciliation” spatiale (influence de la valeur prise en un point sur les valeurs voisines), c’est-a-dire
une loi spatiale & plusieurs points d’appui.

Delhomme (1974, 1976) a étudié I’existence de ce type de structuration des transmissivités a ’aide
du variogramme.™* Il a mis en évidence:

e que la structuration d’un champ de transmissivités apparait beaucoup plus forte si I'on étudie le

logarithme de T (ot de K') plutdt que la valeur elle-méme. Ceci découle évidemment de ’existence
de la loi lognormale (Matheron, note 124, 1974);

e que cette structuration existe trés généralement avec, cependant, le plus souvent un notable “effet
de pépite” sur le variogramme:

ordonnée & I'origin'e =effet de pépite

h

* La définition exacte d’une VR (variable régionalisée) proposée par G. Matheron est une variable caractérisant un
phénomene se déployant dans ’espace (et/ou dans le temps) et y manifestant une certaine structure. Une réalisation
d’une fonction aléatoire peut en particulier étre une VR si elle présente une structure spatiale, s’est-a-dire une
dépendance de la valeur prise en deux points distincts (“conciliation” 4 deux points d’appui).

** ] faut cependant noter que ces études sont quelque peu biaisées par I’hypothése, que font généralement leurs
auteurs, de l'indépendance spatiale de K: deux valeurs dans ’espace ne seraient pas corrélées. Mais le résultat
demeure (voir ci-aprés).

o Gi K (z) est la variable régionalisée “perméabilité” dans I’espace, on appelle “variogramme de K la grandeur:

Y(h) = % Variance [K (z + k) = K (z)]

ol h est un vecteur d’accroissement 4 1,2 ou 3 dimensions. Cette définition fait partie de la “théorie des variables
régionalisées” de G. Matheron, fort utile en hydrogéologie (en particulier le krigeage, permettant d’estimer de
fagon optimale des grandeurs distribuées dans ’espace & partir de mesures ponctuelles).
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Ce terme “effet de pépite” vient de la prospection miniére et désigne une microrégionalisation de la
structure: suivant que le point de mesure tombe ou non sur une “pépite”, la valeur mesurée peut
varier considérablement. A un phénomeéne bien structuré dans I’espace se rajoute, en quelque sorte,
un effet erratique. Ceci n’a d’ailleurs rien pour étonner un hydrogéologue: il sait que deux puits trés
voisins peuvent avoir une transmissivité notablement différente, due & une “non uniformité” de la
formation. Nous retrouvons simplement ici, en termes quantitatifs, cette non uniformité.

e que l'on peut considérer effectivement que les champs de transmissivités sont stationnaires, sans
avoir besoin (principe de ’économie d’hypothése) de chercher de stationnarité sur des accroissements,
valable pour des phénomeénes plus complexes.

Ces trois constatations apportent, en quelque sorte, une justification expérimentale a:1’applicabilité
de la conception “FA” des milieux poreux, et surtout a la faisabilité de I'inférence, a partir d’ane réalisation
unique, de la loi de distribution de la FA et de son comportement spatial.

Admettant que la perméabilité spatiale varie dans ’espace, comment composer les perméabilités
locales pour obtenir une perméabilité moyenne ?

Dans une approche déterministe, il est facile de montrer que la composition de “blocs” uniformes de
perméabilité juxtaposés dans I’espace donne, & une dimension:

- une loi de composition harmonique si les blocs sont en série:

-— ) - I I3
K ‘
! K2 Ks —» &coulement
Xl l;
Kmoyen K;

- une loi de composition arithmétique si les blocs sont en paralléle:

e Ky
€2 Ky —= écoulement
83 K3

]\,moyen Eei = EC,‘]{,'
On retrouve ici la loi de composition des résistances, pour la loi d’Ohm.

Dans une approche probabiliste, ol la perméabilité peut varier dans toutes les directions de ’espace,
Matheron (1967) a établi les résultats suivants:

o Sil’écoulement est uniforme (lignes de courant paralléles) quelle que soit la loi spatiale selon laquelle
varie la perméabilité, et quel que soit le nombre de dimensions de I’espace, la perméabilité moyenne
est toujours comprise entre la moyenne harmonique* et la moyenne arithmétique* des perméabilités

. 1 1
* e harmonique: —=FE| =
moyenn que T ( K)
moyenne arithmétique: Ky = E(K)

moyenne géométrique: Log Km = E(Log K)
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locales.

e Sila loi de distribution de la perméabilité est lognormale, et si I'on se place a deux dimensions,
alors la perméabilité moyenne est exactement la moyenne géométrique des perméabilités locales, en
écoulement uniforme.

e Si I’écoulement n’est pas uniforme (radial convergent, par exemple autour d’un puits), il n’existe
pas de loi de composition constante dans le temps permettant de définir une perméabilité moyenne
de Darcy. Ce probléme est assez préoccupant du point de vue conceptuel, dans la mesure ou c’est
précisément par essais de pompage dans des forages que I’on mesure généralement la perméabilité

(ou la transmissivité) in situ, dans un aquifére (voir Chap. 8). Ce point fait I'objet de recherches
ultérieures.

On retiendra de cette discussion que la perméabilité varie dans ’espace, avec une loi de distribution
généralement lognormale, et une corrélation spatiale assez forte (sur des distances allant de la centaine de
metres a plusieurs kilométres, suivant les aquiféres), mais aussi une assez grande variabilité erratique (effet
de pépite). A deux dimensions, la loi de composition a adopter est alors géométrique. Le krigeage permet

de calculer, par exemple pour les mailles d’'un modéle numérique, les valeurs moyennes a utiliser & partir des
mesures locales.

4.5. MOUVEMENTS DE L’EAU SOUS L’ACTION D’AUTRES CHAMPS DE FORCE

Le gradient de charge hydraulique est le principal moteur du mouvement de I'eau dans les sols; il
n’est cependant pas le seul. On a en effet constaté expérimentalement qu’un milieu poreux soumis a d’autres
gradients est le siége d’écoulement d’eau. Ce sont principalement:

- le gradient de potentiel électrique: I’eau se déplace des voltages élevés vers les voltages bas. Ce
principe a été utilisé pour le drainage électrocinétique de sols peu perméables (voir Terzaghi et Peck

(1967) ou Casagrande (1952));

- le gradient de concentration chimique: 'eau se déplace des zones a faibles concentrations vers celles

A fortes concentrations. Cet effet fait aussi partie de 'effet osmotique qui, de plus, engendre une

filtration sélective des ions en solution;

- le gradient thermique: écoulement des zones & fortes températures vers les zones a faibles tempéra-

tures. Ce phénoméne a de 'importance dans la formation des lentilles de glace dans les sols (Harlan,
1973), etc. ..

On écrira donc une loi de Darcy généralisée de la forme:

U= —7—x—’1 grad h — 7\_72 grad E — fa grad C —f4 grad ©

les coefficients K; peuvent étre scalaires ou tensoriels.* De fagon similaire, les autres flux en milieu poreux

(électricité, éléments en solution, chaleur) vont étre liés aux mémes gradients par d’autres séries de coeffi-
cients:

- = =/ =/
i=—K; grad h— K, grad E— KNjgrad C etc. ..

un gradient de charge entraine donc en particulier un écoulement d’'électricité, d’éléments en solution, de
chaleur, etc. ..

On est donc amené, en thermodynamique, & étudier simultanément I’ensemble des flux et I’ensemble
des gradients, suivant ce que I'on appelle des processus de transports couplés. Il faut se reporter aux travaux
d’Onsager (1931) ou Casimir (1945) cités par Bear (1972) sur la thermodynamique des processus irréversibles.
Les coefficients K sont appelés “coefficients phénoménologiques” et doivent étre mesurés expérimentalement.
Il existe cependant, dans certains cas, des relations de symétrie et de non négativité dans la matrice des
coefficients. En pratique cependant, les coefficients non diagonaux (c’est-a-dire ceux différents de la charge

* Casagrande a trouvé que la “perméabilité électro-osmotique” Ky varie assez peu pour les sols remaniés ou laches,
et est de lordre de 5.107° m?/Volts.s (Rocheman, in Filliat, 1981).
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pour la vitesse, du potentiel électrique pour le courant, de la température pour le flux de chaleur...) sont
relativement petits et négligeables devant les termes diagonaux.

Gradients Charge Potentiel .
Température Concentration
Flux hydraulique électrique
Electro-osmose Osmose Osmose
Fluide DARCY
Casagrande thermique chimique
Seebeck ou Courant de
Electricité Reuss OHM
Thon?on sédimentation
Chaleur Filtration j
PELTIER FOURIER DUFOUR
thermique
Eléments en solution Ultrafiltration Electrophorese SORET FICK

N.B. Seuls les noms en majuscules sont universellement admis. Les cases blanches signifient seulement
que Veffet correspondant ne porte pas de nom et non qu'il n’existe pas.



Chapitre 5

INTEGRATION DES EQUATIONS ELEMENTAIRES
L’EQUATION DE DIFFUSIVITE - LA CONSOLIDATION

5.1. Equation de diffusivité en nappe libre 5.3. Equation de diffusivité générale:
5.2. Théorie de la consolidation de Terzaghi cas de la nappe captive
Action de ’eau intersticielle 5.4  Cas des sols trés compressibles
sur les milieux poreux - 5.5. Autres équations de diffusivité

Au cours des deux chapitres précédents, nous avons établi les trois équations de circulation d’un fluide
en milieu poreux, n’ayant de signification que pour des volumes élémentaires de milieu poreux.

- équation de continuité:

div (pU) + %(pw) +pg=0 (3.2.3)

masse volumique du fluide, [M L~3]

vitesse de filtration du fjuide [LT~!] (comme si toute la section était offerte a I’écoulement)
porosité totale du M.P.*, sans dimension

débit par unité de volume de fluide prélevé (ou apporté s’il est négatif) dans le milieu poreux, T4

o € Sus

auquel s’ajoute un terme de déplacement d’interface fluide-solide si le milieu se déforme.

- loi de Darcy:

- k
U= - [grad p + pg grad z] (4.1.6)

i

tenseur de perméabilité intrinséque, [L?]
viscosité dynamique du fluide, [ML~1T~1]
pression du fluide, [M L™1T 2]
accélération de la pesanteur, [LT~?]

axe vertical orienté vers le haut

NewE W

—_—

grad z: vecteur de composantes (0,0,1)

Cette loi se simplifie pour les fluides incompressibles en:

- k — —_—
7= —% grad h=—K grad h (4.1.5)

h: charge, ou hauteur piézométrique, [L]

* Voir note infrapaginale § 3.2.1.b.
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h=2 4. (3.3.1)
pg

K: tenseur de perméabilité, [LT!]

Elle s’exprime aussi par (4.1.5) pour les fluides compressibles si 'on convient de définir la charge par:

P
h=: +/ A (3.3.2)
o P(P)g
Do: pression a P'origine de I'axe z.
- équation d’état isotherme du fluide:
p= poeﬁ(P—Po) (3.13)

B: coefficient de compressibilité du fluide, [M L~1LT?

Nous allons combiner ces lois dans ce que 1’on appelle ’équation de diffusivité, dont I'intégration per-
mettra de calculer 1'évolution du fluide en milieu poreux, I'inconnue unique conservée étant la pression p
ou la charge h, a partir de laquelle on peut déduire les quatre autres inconnues, p et la vitesse U (3 com-
posantes). Nous obtiendrons ainsi I’équivalent de ce que ’on appelle “I’équation de la chaleur” en thermique
(V0 = ‘p/\— —5t—,pC capacité calorifique, A conductivité, V2 opérateur Laplacien).

Il est plus simple d’établir cette équation séparément dans trois cas particuliers en fonction des hy-
pothéses que ’on peut faire sur le comportement du milieu poreux, dont nous n’avons pas encore jusqu'’ici
défini les équations d’état. Nous regarderons la nappe libre (eau et milieu poreux incompressibles), la théorie

de la consolidation (eau incompressible, milieu poreux compressible) et le cas général (eau et milieu poreux
compressibles).

5.1. EQUATIONS DE DIFFUSIVITE EN NAPPE LIBRE

Une nappe libre est un milieu poreux qui n’est saturé que sur une certaine hauteur et est surmonté

de milieu poreux sec et non saturé. La nappe est généralement limitée vers le bas par un substratum
imperméable.

On peut négliger, dans ce cas, la compressibilité de I’eau (p constant) ainsi que celle du milieu poreux
(w constant); toute variation de charge va entrainer un mouvement de la surface libre qui, en saturant ou
désaturant le milieu poreux, va stocker ou déstocker de ’eau: dans I’équation de continuité, il faut considérer
un volume élémentaire qui comprenne un morceau de surface libre variable.

On prendra pour cela un prisme transversal a la nappe d’épaisseur e entre substratum imperméable et
surface libre.

Nous allons supposer maintenant que, dans cette nappe libre, toutes les vitesses sont horizontales et
paralléles entre elles sur une méme verticale. Cette hypothése, connue sous le nom d’hypothése de Dupuit,
est assez bien satisfaite dans la réalité des que I'on s’éloigne des exutoires.

Supposons que le tenseur de perméabilité admette la verticale comme une de ses directions principales.
D’aprés la loi de Darcy, s’il n’y a pas de composante verticale de la vitesse, c’est qu’il n’y a pas de gradient
de charge vertical. Nous allons prendre alors la charge h(z,y) comme inconnue et nous ramener ainsi a un
probléme plan puisque h est indépendant de z; h représente donc la charge sur une verticale et, en particulier,
la cote de la surface libre de la nappe s’éloigne des exutoires ou de la créte de la nappe.
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hix,y) : surface libre
]
1
!
]
- [}
e [ ]
[
4 dy .
| S Olx, y) : substratum imperméable
dx

Nous choisissons les axes z et y suivant les deux directions principales d’anisotropie du plan.
Rétablissons les trois termes de ’équation de continuité pour le prisme dz,dy(h — o)

a) Flux massique entrant par unité de temps sur les deux faces perpendiculaires & Oz:

h(z.y) h(z+dz,y)
Fr = pdy / Ua(z,y, 2)dz / Us(z + dz, y, 2)dz
a(z.y) o(z+dz,y)

U, étant la composante de la vitesse de filtration suivant z.

Ceci s’écrit:
9 h
F, = —pdy— / Ugdz| dr
oz |/,

La loi de Darcy nous permet de calculer Uy:
h
Uy = —K”(z,y,z)-g—z

. Oh . . .
En substituant, on remarque que— ne dépend pas de z. Si on ajoute le terme correspondant au flux
entrant par la face perpendiculaire a Oy, on obtient:

‘ d b dh d b Bh
F_+pd:cdy{5—1—' [/, I"’d’"a—i] +6—y [/0 I\yydz.a—y}}

On supposera qu’il n’entre ni ne sort de flux par les faces haut et bas (voir plus loin, § c).

b) Variation de masse de I'élément

La masse d’eau mobilisable par gravité (porosité de drainage wq) contenue dans I’élément est pwa(h —
o) dzdy et sa variation dins Punité de temps est:

Oh
pwd adrdy

La variation de la cose h de la surface libre entraine bien la misafen jeu de la porosité de drainage wy,
et non de la porosité totale w. '

c) Le débit volumique de fluide prélevé dans I’élément s’obtiendra par intégration de o & h: ¢ est
positif s’il est prélevé, négatif s’il est injecté.

h
/ gdz.dzdy = Q dzdy
4

Q étant maintenant le débit prélevé par unité de surface de la nappe. Le débit massique est donc pQ dzdy.
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Ce terme de débit par unité de surface permet justement de tenir compte des échanges de la nappe avec
Pextérieur (prélevements, infiltration,...) en supposant qu’ils se réalisent sur toute ’épaisseur de la nappe.

d) Bilan

En écrivant la conservation de la masse en faisant la somme de ces trois quantités, il vient, en simplifiant
par p, qui est constant, et dzdy qui est ’aire élémentaire de nappe:

8 | (.. ,on| o8|+ on oh
"a—; [/a I\z_-,;dz.'g;] =+ % {/ﬂ ]\yydz.gg] = wdgt— +Q (511)

C’est ’équation de diffusivité en nappe libre. Elle est non linéaire en h.

Si K;r et Ky sont constants sur toute verticale, on peut faire disparaitre I'intégrale sur z:

9

. 6h o, Oh Oh
-8_1'- [1\;:(’1 - 0’)5}-] + -8—‘1; [[\yy(h - 0')-‘-—]

N T (5.12)

Elle est toujours non linéaire en h.

Cependant, on peut généralement la linéariser en considérant les quantités:

h h
Ter =/ Kgz dz et Tyy = / KRyydz
o g

que nous avons déja définies comme les transmissivités de la nappe (intégrale de la perméabilité sur I’épaisseur
de la nappe), anisotropes ici.

On supposera que la transmissivité varie peu avec la charge h, c’est-a-dire que les variations de h sont
négligeables devant (h — ¢): par exemple, inférieures & 10%, ou encore que la répartition verticale de K est
telle que les variations de h n’entrainent pas une variation de T de plus de 10% (c’est vrai si la perméabilité
est plus forte en profondeur qu’en surface, par exemple une couche de graviers profonds surmontée par des

sables fins). On écrit alors:
0 Oh 0 Oh oh
-0—1:- (Tzrﬂ) + a_y (Tyy-a—g) -—wdE'*'Q (513)

Si enfin la transmissivité est isotrope et constante dans toute la nappe:

8h  8°h  wyg Oh Q
522 + —3;2— =T 5 + T (5.1.4)

équation aux dérivées partielles finéaire de second ordre de type parabolique, analogue a I’équation de la
chaleur. V? est I'opérateur Laplacien, défini ci-dessus & deux dimensions.

Comme nous le verrons plus loin, les formes (5.1.3 et 5.1.4) sont trés couramment utilisées dans la
pratique.

On peut encore proposer une autre solution dans le cas ou le substratum o est horizontal. Si on prend
o = 0 comme plan de référence pour le potentiel, h — ¢ = h est 1'épaisseur de la nappe, et (5.1.2) s’écrit):

0 6h] 0 6h] oh
= Wy

-('9; [I\Ixhéz + a—y []iyyh—a—; E'FQ
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Si l’on peut supposer K = Kyy = K constant dane I’espace (milieu isotrope et uniforme), ceci s’écrit:

soit une équation en h2. Sil'on est en régimé permanent (E = 0),4l’équation est linéaire en h%. Nous nous

en servirons pour étudier I’écoulement autour d’un puits.

5.2. THEORIE DE LA CONSOLIDATION DE TERZAGHL ACTION DE L’EAU INTER-
STICIELLE SUR LES MILIEUX ROCHEUX.

Nous allons examiner d’abord les interactions entre solide et liquide en nous inspirant de Schneebeli.
Ce paragraphe concerne surtout le Génie Civil pour des couches a faible profondeur. Le milieu est supposé
formé de grains sans cohésion entre eux (sableux).

a) Contraintes effectives et pression neutre

Le milieu poreux est supposé saturé et ne contient que des grains (phase solide) et une phase liquide
remplissant tous les interstices.

Quel est effet d’une charge extérieure appliquée sur un tel matériau 7 Décrivons Pexpérience de
Terzaghi:

grenaille
de plomb
.

sable saturé

Dans le cas b (charge extérieure = colonne d’eau), la pression 3 la surface du milieu poreux est pl. Elle

ne provoque aucun tassement. Dans le cas ¢ (charge extérieure = grenaille de plomb), la méme pression sur
le milieu poreux provoque un tassement 4.

Conclusion: Seules les charges appliquées directement sur le squelette solide provoquent des effets mé-
caniques sur le milieu poreux. L’effet d’une charge d’eau réside uniquement dans une aug-
mentation de la pression du liquide imprégnant le sable et, comme les grains solides sont
pratiquement incompressibles dans le domaine des pressions mises en jeu, il n’en résulte
aucun effet apparent.

Définition: Terzaghi a appelé contraintes effectives celles qui sont transmises directement de grain a
grain, comme dans le cas de la grenaille de plomb. Elles seules ont une action sur la phase
solide, contrairement a la pression du liquide intersticiel qui est appelée pression neutre.
Les contraintes totales appliquées au complexe solide-liquide se décomposent donc en con-
traintes effectives et pression neutre. On a:

oc=0+p

C’est I’équation de base de ce chapitre. Dans le cas le plus général, o et & sont des tenseurs
comportant trois contraintes normales et trois contraintes tangentielles.

Hypothéses: Nous supposerons, pour le paragraphe 5.2:
- le liquide incompressible, donc p constant,
- les grains solides du milieu incompressibles,
- le milieu poreux compressible par réduction de la porosité w.
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b) Soulévement hydrostatique

Considérons une colonne de terrain sec de hauteur ¢. La base de la colonne subit une pression cor-
respondant au poids de la colonne de terrain. Par définition, c’est une contrainte effective puisqu’elle est
transmise par les grains. '

oud, =
Pd =
Ps =
W =

;= pa gl =p, (1-w)gt

contrainte effective dans la direction verticale,
masse volumique du terrain sec,

masse volumique des grains solides de terrain,
porosité totale.

Notez qu’en mécanique des sols, on a I’habitude de travailler en poids spé-
cifiques v = pg, mais nous conserverons ici les notations habituelles en masse

volumique.

La contrainte totale est ici égale & la contrainte effective, ¢, = 7,.

ms Si maintenant la colonne est saturée d’eau au repos, la contrainte totale a la base de la colonne sera
(poids du terrain + poids de I’eau):

0. = ps(l —w)gl + pugl = p, gt
Pw = ps(1 = w) + pw = masse volumique du terrain saturé,
p = masse volumique de I’eau.

La contrainte effective sera, d’aprés sa définition:

Du point de vue mécanique, tout se passe comme si la masse volumique du terrain était:

0, =0, —p=pugl—pgl=py — p)gt

Pa=puw—p=(l-w)(p, —p)

Pa est la masse volumique apparente, ou encore déjaugée, du terrain saturé.

La réduction apparente de la masse wolumique du sol n’est en fait que le résultat de la poussée
d’Archiméde de I’eau sur les grains. On lui donne le nom de soulévement hydrostatique.

c) Pressions de courant ou poussée d'écoulement

Considérons un volume élémentaire dzdz x 1 de milieu poreux oul ’eau intersticielle est en mouvement
avec une vitesse de filtration U dans le plan z, z.
Calculons, suivant Schneebeli, les résultantes des trois forces appliquées a I’élément;:

- forces de pression dues au fluide,
- forces de pesanteur dues a la gravité,

. . dp
- forces de contact grain & grain dues 4 la contrainte effective. D*a— dz
4
- Pressions: Sur la face AD agit une force normale, pdz, D ¢
o)
et sur BC, la force normale (p + a—edz) dz
I
Leur résultante dirigée selon Oz est:
p == 1dz
op
——dzd:z
0z
De méme, sur AB et CS, la résultante est: dx
) A '
—Edzdz o

—

soit une résultante générale des forces de pression — grad p par unité de

volume.

- p+— dx

Ox

20
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—

- Gravité: La force de gravité sur 1’élément a pour résultante: —p, g grad z. =

- Résultante de ces deux forces: Introduisons la charge au lieu de la pression h = ;)% +z:

— grad p=—pg grad h+pg grad z

d’ou la résultante:

R=—pggrad h+ pg grad z— pyg grad z
— —
= —pg grad h — p,g grad z

Les deux dernitres forces, pesanteur et soulévement hydrostatique, se combinent dans le terme de masse

—

volumique déjaugée (ou apparente) p,. Le premier terme pg grad h est baptisé pression de courant ou
poussée d’écoulement. C’est une force de volume dirigée en sens inverse du gradient de charge, c’esta-dire
dans le sens de la vitesse de filtration U si le milteu est isoirope.

La variation de contrainte effective équilibre ces poussées pour réaliser la stabilité de I’élément. En
conclusion, I’écoulement de P’eau engendre des variations de la contrainte effective agissant sur la phase
solide, dont il faut parfois tenir compte en génie civil.

alimentation

Exemple: Renard  TFT"~~=

On réalise ’expérience suivante d’écoulement ascendant dans une
colonne de sable. L’écoulement est uniforme et le gradient de charge
est grad h = H/¢ dirigé vers le haut. La résultante R de la poussée
d’écoulement et de gravité est la force de volume:

——

(pa — p grad h)g

]

Si on augmente graduellement la charge H, il viendra un moment
on cette force de volume s’annulera: le sable devient en apparence
soustrait a la pesanteur: il est devenu “boulant”. Un objet lourd posé Tube souple
sur la colonne s’y enfoncera. Si on augmente encore H, la colonne
enticre de sable se souléve: on a créé un “renard”. Le gradient critique
correspondant a la disparition de toute force de volume est:

Ceci est fondamental en mécanique des sols. Considérons, par exemple, une digue en terre homogéne
sans masque d’étanchéité. A premiére vue, on pourrait penser que la face amont de la digue est soumise a
la poussée hydrostatique de I’eau de la retenue. C’est entierement faux. En effet, la pression agissant sur un
élément du parement amont est une pression neutre qui n’est donc pas transmise par les grains solides. La
poussée de I’eau ne se transmet pas sur le parement amont de la digue, mais se décompose en un systeme de
forces de volume agissant sur la totalité du volume saturé. La résistance de la digue dépendra d’une fagon
essentielle des caractéristiques de ’écoulement de filtration a travers la digue, qu’il faudra donc calculer.

d) Théorie de la consolidation suivant Terzaghi

Lorsque 1’on charge certains terrains peu perméables saturés d’eau, on ne constate a priori que peu ou
pas de tassement. Toutefois, le tassement final obtenu au bout d’un temps parfois trés long est considérable.

Ce phénomene de tassement dans le temps est appelé consolidation. 1l se manifeste surtout dans le cas de
terrains argileux.

Terzaghi a montré que la consolidation s’explique par ’écoulement lent de P’eau intersticielle contenue
dans le sol ainsi que le montre 1’analogie des pistons percés:
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poids poids
Plaque poreuse
Piston
eau
argile .
ressorts saturée

Si le récipient est vide, la surcharge appliquée est intégralement encaissée par les ressorts qui vont
se raccourcir: le tassement est instantané et élastique. Mais si le récipient est plein d’eau et si les trous
des pistons sont trés petits, 'enfoncement des pistons ne se fera pas immédiatement: la surcharge sera
initialement encaissée par une augmentation de pression d’eau (sans tassement si I’eau est considérée comme
incompressible) qui s’échappera peu a peu du systéme et laissera aux ressorts le soin d’encaisser la surcharge
en se tassant.

De méme, le tassement de l'argile saturée (essai a Pcedométre) se fera par expulsion d’eau qu’il faut
drainer par I'intermédiaire de la plaque poreuse:
La théorie de consolidation suppose que:
i) I’écoulement de ’eau intersticielle suit la loi de Darcy;
ii) la perméabilité K du terrain ne varie pas au cours de la consolidation (ce qui n’est qu’une appro-
Ximation de la réalité);
i) D'eau et les éléments solides de terrain sont incompressibles, une compression correspond donc &
une diminution de la porosité:
iiii) la compressibilité du sol (diminution de la porosité) est “élastique”, c’est-a-dire qu’il existe une
relation linéaire entre contrainte de compression effective et diminution du volume du sol. Cest
aussi une approximation de la réalité (voir paragraphe suivant).

Le mécanisme de la consolidation suppose qu’une surcharge extérieure appliquée au sol est encaissée
en partie par la phase solide (augmentation de contrainte effective), et en partie par l’eau intersticielle
(augmentation de la pression). Sous D'effet de cette augmentation de pression, un écoulement transitoire
prend naissance, il y a drainage de I’eau et augmentation progressive de la contrainte effective, d’oli tassement.

Nous allons chercher a établir I"éguation d’état du sol. Pendant la consolidation, les charges extérieures
restent constantes, ainsi que la contrainte totale qui en est le résultat.

0 = 0 + p = constante
donc

5 +dp=0 (5.2.1)

Au début de la consolidation, la surpression est entiérement encaissée par p, elle se transforme peu a peu

en augmentation de contrainte effective jusqu’a ce que la pression revienne a une répartition hydrostatique
(absence d’écoulement).

D’apres I'hypotheése 4i, la variation relative de volume d’un élément du sol doit s’écrire:

—% =a dé (5.2.2)

.,

avec: o = coefficient de compressibilité spécifique du sol, [M~=1L!T?]

& = contrainte effective.

D’aprés ’hypothése 3i, la variation de volume de 1’élément est entiérement due  la variation de sa

porosité: si V est le volume total de I’élément de sol, notons Vp le volume des pores et Vg le volume de la
phase solide:
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V=Vs+Vp et dV =dVp

dv . .
Nous allons calculer, selon cette hypotheése, v en fonction de dw. Il vient:

w= -\_/_V-:—V— (porosité totale)
N P
Vs +Vp -V,
dw = —S———VPT-—P dVp

1-w dv
—_— ——— d = —_ —_—
dw v Vp=(1-w) %
soit, en tenant compte de (5.2.1) et (5.2.2):

dw = (1=w)a dp
Et si I’on s’intéresse aux dérivées locales de ces grandeurs (systéme de coordonnées d’Euler):

Ow Op

qui nous servira a décrire le comportement du milieu poreux.

Le tassement est directement donné par (5.2.2) si I'on connait la variation de contrainte effective. Or
celle-ci est calculable par (5.2.1) si 'on connait 1'évolution de la pression. Il faut donc calculer I’évolution
transitoire de la pression dans le terrain.

Nous allons choisir la pression comme inconnue principale, et écrire I’équation de la consolidation a
partir:

- de ’équation de continuité,(3.2.3): div (pU) + %(pw) +pg=0

- de la loi de Darcy (4.1.6): U= —%[ grad p+ pg grad z]

- de I’équation d’état de I'eau (5.2.4): p = constante (fluide incompressible)

- de I’équation d’état du milieu poreux (5.2.3): %:ti =(1- w)oz%ltZ
Ces équations se combinent aisément. Rapidement, il vient:
s Ow
(3.23) + (524) — divU+ s te= 0

id  + (523) —»-div17=(1—w)a%—‘t’+q

—_— 6
id  + (416 —| div(k grad p)=pg(1-w)a?§ + pgq (5.2.5)

car, pg étant constant, div (grad z) = 0.

C’est I’équation de la consolidation. Rappelons que ¢ représente le débit prélevé (ou apporté s’il est
négatif) par unité de volume dans le milieu poreux. Il est ici généralement nul.

Si la perméabilité K est isotrope et constante, I’équation se simplifie en:
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1- )
V2 = (_;"T)“’E a_zt’ (5.2.6)

V? étant I’opérateur Laplacien et le débit ¢ étant supposé nul.

. 1- . N . .
Le coefficient Cy = (_—222 est appelé coefficient de consolidation, [L~2T*]. On néglige parfois le

terme (1 —w) devant 1.

Freeze (1979) donne les ordres de grandeur suivants pour la compressibilité des sols:

argiles a=10"%410"% en m2/Newton, ou Pascal~!
sables a=10"7210"° en m?/Newton, ou Pascal~!
graviers a=10"8 4 107'° en m?/Newton, ou Pascal~!
roches fissurées a=10"8 2 107'° en m?/Newton, ou Pascal™!
roches compactes a=10"% 4 10"'! en m?/Newton, ou Pascal™!

Une fois calculée I’évolution de la pression p, on connait donc celle de la contrainte effective & par
7 + p =constante. On en déduit les tassements par:

aAg = - = 22

vV ¢

¢ étant I’épaisseur de la couche qui se consolide si le tassement s’effectue uniquement suivant la direction
verticale.

Notez que dans les milieux argileux, la compression n’est en principe élastique qu’en toute premiére
approximation. En particulier, les tassements ne sont pas réversibles. Une argile soumise & des cycles de
compression accuse un changement de pente dans son tassement quand la contrainte atteint ou dépasse la
contrainte maximum que I’argile a déja atteinte, appelée contrainte de consolidation:

Tassements

Cycle de
chargement ~

Contrainte

Pour cette raison, les tassements en milieux poreux, dus 4 des pompages, ne sont que trés faiblement
réversibles si la pression est rétablie et la contrainte diminuée.

Il faut noter enfin que dans quelques rares cas, oli existeraient des pores non connectés ot les pressions
ne se transmettent pas, la relation ¢ = @ + p n’est plus valable: une augmentation de contrainte totale &
peut presqu’entierement étre immédiatement supportée par la contrainte effective &.

e) Contrainte effective en milieu non saturé

Nous avons vu qu’en milieu saturé, & contrainte totale constante, il existe une relation linéaire de pente
-1 entre p et 6. Mais en non saturé, quand la pression devient inférieure a la pression atmosphérique, cette
relation devient plus complexe. Elle est résumée par le graphique suivant (Freeze, 1979):
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LY P

Succion Pression

Bishop (1959) propose la relation:

0 =0=P(air) = z(p(eau) - p(air))
avec r = 1 a saturation, z = 0 i sec, et des valeurs intermédiaires en fonction de la teneur en eau.

On constate en effet empiriquement qu’en 167¢ estimation, le sol non saturé ne supporte la contrainte
totale que par la contrainte effective (courbe 1); la pression ne joue pas de role.

En réalité, le comportement réel est plus proche de la courbe 2, laquelle est fonction de la structure du
sol, et de I'historique d’humidification et de drainage du sol.

5.3. EQUATION DE DIFFUSIVITE GENERALE: CAS DE LA NAPPE CAPTIVE

La théorie compléte n’est pas trés simple a établir, et c’est pourquoi nous ’avons laissée en dernier. Il
faut en effet supposer le fluide compressible et le milieu poreux compressible, aussi bien pour les pores que
pour les grains solides. Mais si le milieu poreux est compressible, il faut en toute rigueur tenir compte de
son déplacement dans I’équation de continuité: dans le volume élémentaire fixe en coordonnées d’Euler, dans
lequel nous ferons le bilan, nous aurons un flux de grains solides aussi bien que de fluide.

Nous supposons en outre le milieu poreux entiérement saturé en fluide, car I’équation complete ou les
trois compressibilités interviennent n'a de sens qu’en nappe captive profonde, c’est-a-dire en couche aquifere
confinée entre deux imperméables:

1 1

Nous utiliserons:

a) ’équation de continuité du fluide dans un volume élémentaire fize de I'espace:
. - 0
div (pU) + = (Ab) + pg = 0 (3.2.3)

b) I'équation de continuité du flux de grains solides dans le méme volume élémentaire de I'espace.

Si nous définissons pour le solide les mémes quantités moyennes que pour le fluide:

< ps > ! / m dz’
= T I
ps T <os /| 7S

- 0 dans les pores

ps masse volumique du solide valant: {- celle du solide dans les grains
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1
< ps >

< Ug >= / psﬂs m dz’

is vitesse réelle du solide valant: {- 0 dans les pores

- celle de chaque point du solide dans les grains

On peut montrer, par exactement le méme raisonnement que pour le fluide, que 1’équation de continuité
du solide s’écrit:

. . 0
div [< ps >< is >]+E[(l—<w>)<p5 >]=0

En laissant tomber les signes de moyennes <> pour simplifier les notations, on écrira:

div [ps(—js] + gz[(l - w)ps] =0 ’ (531)

(75 =< U > est la vitesse fictive de déplacement du solide, comme si toute la section lui était offerte.

On définira, de méme que pour le fluide, une “vitesse macroscopique moyenne” du solide, en disant que
s est nul dans les pores.

Us
l—-w

¢) La loi de Darcy

—

Dans sa forme classique, elle s’applique en fait & la vitesse moyenne réelle du liquide (@* = —) par
w
rapport a celle du solide | 4§ = Us
p S (1 — w)
géométriquement les vitesses u* et (7; pour obtenir I'expression exacte de la loi de Darcy: c’est (u* — @%)

qui est proportionnelle au gradient de pression et a la gravité, ou encore (l7 — wuY) (voir Remson, Cooper,
Biot, Assens).

), et non par rapport a l'espace fixe*. Il faut donc composer

De I’expression générale (4.1.6) de la loi de Darcy, on tire:

—

T .
U-wig = —;( grad p+ pg grad z2) (5.3.2)

d) Combinons I’'équation de continuité (3.2.3) avec (5.3.1) et (5.3.2)

Nous supposerons que toutes les grandeurs p, ps, p,w, U, Us sont des fonctions d’Euler, c’est-a-dire rap-
portées en un point fixe de l'espace par rapport au référentiel. Il vient:

_— . o
(3.23) + (5.3.2) div [p;( grad p+ pg grad 2)] = div (pwis) + a(pw) + pq

or div (pwis) = pw div @5 + 75 grad (pw)
t Thd d — = —
e us grad (pw) + B (pw) 1 (pw)

* En toute rigueur, il faudrait utiliser ici la porosité cinématique w. et non la porosité totale w. Nous faisons
ici une petite approximation.
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Cest-a-dire la dérivée de transport™ de pw en suivant le déplacement moyen du solide, a la vitesse uf. Nous
chercherons donc les variations de w et p & l'intérieur du domaine élémentaire constitué par le solide qui se
déforme, c’est-a-dire contenant une quantité constante de solide.

De plus, en remplagant dans (5.3.1) Us par (1 —w)i, il vient:

e 0
(1 —w)ps div @s + @5 grad [(1 —w)ps] + -a—t[(l - w)ps]=0

soit de méme:

. d
(1 - w)ps div us + :i?[(l —~w)ps] =0

soit finalement, en combinant:

v |2 T ot po gl 2)| =Wy £ G g dhs
div u(grad p+ pg grad z)]-wdt+l_w T s dt +pq (5.3.3)

e) Les équations d’état du liquide et du solide

Nous choisissons comme seule inconnue la pression p. Il faut donc estimer Flt)-’ T 25 Jans 1’élément

dt
de milieu poreux mobile (qui se déforme), mais contenant une quantité constante de solide.

- Pour le liquide, nous la connaissons, c’est 'équation de compressibilité isotherme (3.1.3):

p = poeli(P=Po)

soit encore:

dp

_ g0
:l-t_ =p ﬂl dt (534)

B est facilement accessible a la mesure.

- Pour le solide, les choses se compliquent et il faut faire deux pages de calcul, et définir une armée de
. . . . . . d
coefficients, pour s’en sortir. Allons-y sans oublier le but fixé: exprimer —— et %P5 en fonction de k.

Contrairement 3 la théorie de la consolidation exposée plus haut, les volumes de pores et de solides vont
dépendre non seulement de la contrainte effective &, mais aussi de la pression p. Notons:

V = volume total de ’élément de M.P. mobile,
Vs = volume du solide,
Vp = volume des pores(V = Vs + Vp)
On définit:
i) le coefficient de compressibilité des grains solides par:

dVs dps
Rl R P 5.3.5
Vs s Bsdp (5.3.5)

le produit psVs = masse de solide étant une constante dans I’élément de M.P. mobile; #5 est mesurable sur
des minéraux purs ou 2 la cellule triaxiale (voir plus loin).

** ou encore dérivée particulaire: c’est la variation dans I'intervalle de temps élémentaire d’une propriété (ici pw) en
un point qui se déplace avec les grains solides. On la note comme une dérivée totale d/dt.
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i) Compressibilité de la matrice poreuse: La théorie de I’élasticité des milieux continus, valable également
pour les milieux poreux, exprime qu’il existe une relation linéaire entre le tenseur des déformations et le
tenseur des accroissements de contraintes effectives. On se place le plus souvent dans le cas d’un milieu
isotrope du point de vue des propriétés mécaniques, c’est-a-dire défini par deux coefficients seulement, le
module d’Young, E, et le coefficient de Poisson, v. Cette hypothése n’est cependant pas indispensable.

Si Ag; sont les trois accroissements de contraintes effectives normales dans les trois directions principales

(4,7, k) du tenseur des accroissements de contraintes, et si ¢; sont des déformations relatives dans ces mémes
directions:

I
(&' = %) 1 : élément de longueur

la théorie de I’élasticité s’écrit:

1, _ vo,._ _
—€i = —E—Aa,- -7 (AF; + Ady)

La dilatation volumique est la somme des trois déformations relatives:

AV 1 ~ 2v _
- % = —EE,' = *E—(SAO’,) - f (SAG,)
Notons A& l'accroissement moyen des contraintes: Ag = %EA&,‘
Alors: AV 31— 2)
— 2v _
V=TT E A

Le signe moins signifie que le volume V' diminue si la contrainte effective & augmente (compression).

On voit donc que I’anisotropie éventuelle de ’accroissement de contraintes est sans importance, c’est
l'augmentation moyenne de contraintes effectives qui importe. Quand nous parlerons d’augmentation de
contrainte, ce sera donc toujours de contrainte moyenne que nous parlerons, pour un milieu isotrope.

. T av ,
Il existe donc une relation linéaire entre A et d&. C’est celle que nous avons notée:

dv

- = —ads (52.2) d’ot o= U=

E
dans la théorie de la consolidation. Il faut bien voir que, dans cette théorie. on suppose que la contrainte totale

o est une constante: le coefficient « est défini pour une fransformation particuliére de 1’état de contrainte
de la roche, d’oli d& + dp = 0. Il est accessible par une mesure directe sur échantillon a la cellule triaxiale.

Admettant que V, Vs et Vp sont des fonctions de & et p, on pose alors a priori des lois de compressibilité
linéaires en dp et d&, telles que celle de 1'élasticité ci-dessus. En fait, on a I’habitude de les écrire en dp et
do, pression et contrainte totale, ce qui simplifie les calculs. On peut toujours revenir 4 d& par:

do = d& + dp
On écrit:
%’- = —Cdo + adp
V£ = —Cpdo + apdp (5.3.6)

Vs = _Cgdo + asdp

Ces six coeflicients de compressibilité relatifs sont positifs. Le coefficient a de (5.3.6) est bien le méme
que celui de (5.2.2) rappelé ci-dessus, car si nous faisons une transformation de 1’état de contrainte  do = 0,

C’est-a-dire dp = —d&, la 18T€ équation (5.3.6) donne: %—,V— = —ads.
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Ces coefficients ne sont pas indépendants: nous allons montrer que I’on peut établir entre eux les relations

suivantes:

C = a+fs
Cp = 2
ap 2~ PBs
as = 15Bs
Cs £

(5.3.7)

Preuve: Les équations (5.3.6) sont générales. Faisant, pendant la durée de cette “preuve”, abstraction des
conditions réelles de variation des contraintes que nous rencontrerons en hydrogéologie, nous allons tirer les
cing relations (5.3.7) entre les six coefficients en faisant subir par la pensée trois transformations particulieres
au milieu poreux. Si nous mettons ainsi des relations en évidence entre les coefficients, ces relations seront

générales puisque, par définition, ces coefficients sont constants.

- 18€ transformation: Supposons que do = 0 (contrainte totale constante):

7,
%V_ = adp . %Pﬁ = apdp ,
Nous avons de plus: V=Vp+Vs
soit, en différenciant: dV = dVp + dVs
ou encore: QZ:YF—&+E d_v_s—_—w.d_‘i}.’.
1% vV Vp vV Vs Vp

La premiére relation s’écrit donc:

a=wap+ (1 —w)as

+(1~-w)—

. 28mMe (1o sformation® Supposons d& = 0 (contrainte effective constante). L’arrangement des grains de
la matrice poreuse est en fait fonction de la seule contrainte effective: si on 'augmente, le milieu se tasse, et
inversement. Donc, dans le cas présent, cet arrangement ne changera pas. La variation de volume du milieu
poreux qui peut intervenir sera uniquement due a la dilatation ou 4 la contraction des grains, le milieu se
déformera de facon homotétique. La porosité w du milieu ne doit donc pas varier.

Dew = %}-’-, on déduit:
0= VdVy = VpdV

dow = 72
Lo By AV _dVdyy s
Vo Vv V-V Vs
en tenant compte de V = Vp + Vs
Or, si dé = 0, on a do = dp,
dV. dV,
donc: —V—i =(as —Cs)dp et VP =(ap—-Cp)dp et
S P

Mais nous avons déja défini le coefficient de compressibilité du solide:
dVs
Vs

défini sur un minéral isolé, c’est-a-dire effectivement quand d& = 0.

= —fsdp

Les trois relations suivantes en découlent:

5= (a=C)dp
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ﬂS:CS—C’s:Cp—ap"—“C—a

- 3°M€ transformation: Geertsma (1957) propose d'utiliser le théoreme de Maxwell-Betti (dit encore de
Betti et Rayleigh) qui s’énonce ainsi:
“Etant donné deuz charges hydrostatiques élémentaires imposées do et dp, le travail des

forces dues a la premiére charge dans le déplacement dii d la deuriéme est égal au travail des
forces dues a la deuriéme dans le déplacement di d la premiére”

(5), ) e=-[(52) o]

Les parentheses rappellent que les dérivées sont prises & & et p constant respectivement.

En effet, le travail de la contrainte totale porte sur tout le volume V, (AVdo) tandis que le travail de la
pression ne porte que sur le volume des pores ou cette pression se manifeste (AVpdp).

Ce théoréme est une conséquence directe de la linéarité des équations de compression que nous avons
admise (élasticité). On le démontre a partir du calcul de I’énergie potentielle élastique:
2V = ¥5,e; + pXe;

qui est une forme quadratique des déformations ¢;. Voir les cours de mécanique des milieux continus pour
plus de détails.

Ce théoréme nous donne directement:

ov __ov
Op = 0o
soit aV= CpVp
ou a= wCp

En arrangeant, nous avons donc établi les cinq relations (5.3.7).

Revenons a nos inconnues 5 et —gtf- Nous allons faire I'hypothése, pour étudier le volume élémentaire

de milieu poreux mobile, que la contrainte totale ne varie pas, ce qui est généralement bien réalisé dans la
pratique dans la mise en exploitation des nappes captives profondes: la contrainte totale due au poids des
terrains sus-jacents ne varie pas.

el
dt
Nous pouvons écrire: s=(1-w)V
d’ou en différenciant: dVs = (1 —w)dV = Vdw
. Vs dVs dy
ou: v Ve _(l—w)v-—d.a
dv
soit: dw:(l—w) (-(-ivz—_v‘s_s)

D’apreés (5.3.6), en y faisant do = 0, il vient:

dw = (1-w)(a—as)dp
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que nous pouvons exprimer en terme de dérivée de transport puisque w et p sont tous deux mesurés dans
un méme repere Lagrangien se déplagant a la vitesse du solide:

dw dp
T = (1-w)(a— Os)a‘
i dps
dt
La conservation de la masse solide dans le volume élémentaire mobile s’écrit:
d dV.
d(psVs) =0 soit Ps 5oy
ps Vs

Soit de méme, d’aprés (5.3.6), avec do = 0, et en prenant la dérivée de transport, ps et p étant rapportés
au méme repére lié au solide:

dps d

D5~ psas
dt dt

Nous avons fait le tour des équations d’état du milieu poreux.

f) Synthése: 1’équation de diffusivité. Simplifications

Introduisant ces trois équah’ons d’état dans I’équation (5.3.3) et tenant compte de la valeur de ag tirée
de (5.3.7), il vient:

| kp— —_— _ al dp
div [7( grad p+ pg grad 2)] = pw [51 - Bs+ ;] - T

soit, en multipliant par g:

d
2 4+ pgq (5.3.8)

. = a
div [K'( grad p+pg grad z)] = pug [ﬂz - Bs+ —] o

w

. (64 . R . L.
Le coefficient S; = pwyg [BI - Bs+ —] est baptisé coefficient d’emmagasinement spécifique de la nappe
w

(sa dimension est [L™!]). On y néglige généralement le terme Bs qui est de 'ordre de 2—,[}’,, alors que « est

du méme ordre de grandeur que 3, qui vaut environ 5 x 107'® MKS (dimension [A~!LT?]).

Simplifications:

On substitue généralement la charge h a la pression p dans I’équation (5.3.8) en faisant ’hypothése,
admissible dans la pratique, que p est variable dans le temps (compressibilité), mais peu variable dans
I’espace, afin de pouvoir sortir ie terme pg de 'opérateur divergence:,

div [K( grad p+ pg grad z)] ~ pg div [—7—\- grad (;% + z)] = pg div (T grad h)

D’autre part, comme ©%, la vitesse du solide, est trés faible, on néglige le terme @ grad p devant Z—It),
et on écrit:



82 Intégration des équations élémentaires

pg div (K grad h) = s,?a—’t’ + pggq

On peut également dire que 'on garde 1’équation en dérivée totale, car les instruments de mesure

(piézométres. . . ) étant liés au solide, c’est en fait P et non £ que l'on sait mesurer. De plus, en différenciant

dt ot

Pexpression p = pg(h — z), il vient:

Op _  0Oh Op
3 =PI Tk
soit, en tenant compte de (5.3.4): % = pﬂlg—;t;
Oh

_op
P95 = 5;[1 + pg(z — h)Bi]

On peut négliger pg(z — h)B; devant I: en eflet, pour ¢ = 10 m/s?, 3; = 5.10~1% MKS et p = 103 kg/m?,
ce terme est inférieur & 1/100 tant que (h — z) est inférieur & 2000 m. Alors:
6h Op
Pi%5; = B¢
En substituant dans (5.3.8) et en simplifiant par pg, il vient:

div (Kgrad h) = S, ‘Z—}t’ +q (5.3.9)

équation de diffusivité utilisée pour les nappes captives.

On peut se ramener parfois a un probléme plan en considérant que, dans la nappe captive, la charge h nc
varie pas sur une perpendiculaire aux épontes, comme nous l’avions fait pour la nappe libre, pour la direztion
verticale. On intégre K, en supposant qu’une direction principale d’anisotropie est ladite perpendiculaire
aux épontes, et que z et y sont les deux autres, appartenant au plan des épontes:

toit toit R
Ter = / K, dz T,y = / Ky,d:
substratum substratum
toit toit
S = / Ssdz Q = / qdz
substratum substratum

S est le coefficient d’emmagasinement de la nappe (il est sans dimension). En particulier, si Kz, Kyy et Sg
sont constants sur toute ’épaisseur e de la nappe captive:

. . a
Trr = Kere , Tyy=Kye , S=8S,e=puge (,81;)
S varie grossiérement entre 10=3 et 10~5.

Il vient alors, substratum et toit étant supposés paralléles pour pouvoir négliger leur variation d’écartement
dans ’espace lors de l'intégration (voir drainance, § 8.3):

.= 8h
div (T grad h) = S-a—t— +Q (5.3.10)

équation dont nous nous servirons continuellement.

Si enfin, T est isotrope et constant dans ’espace:
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2 2
v = R O S o g- (5.3.11)

St T

Le rapport T/S est appelé diffusivité de ’aquifere. Ces équations sont identiques a celles de la nappe
libre, mais S remplace ici la porosité wg. Il faut bien voir cependant, que méme si les deux équations nappe
libre-nappe captive sont identiques, les mécanismes mis en jeux (mouvement de la surface libre dans un cas,
compressibilité de I’eau, des grains et du sol dans I’autre) sont distincts, de méme que la fagon d’établir les
équations et les approximations faites.

5.4. CAS DES SOLS TRES COMPRESSIBLES

Gambolati (1973), étudiant les tassements & Venise sous 'influence des pompages de Mestre, a établi une
expression légerement différente du coefficient d’emmagasinement pour les sols trés compressibles (vases,...).

Il suppose que les grains sont incompressibles (ps = cst), mais que le coefficient de ¢ :mpressibilité du
milieu poreux, a, est important. Son analyse est de plus limitée & un écoulement monodim nsionnel vertical.
11 définit la dilatation linéaire, au lieu de la dilatation volumique:

Al .
6Z=T=—0A6=aAp st Ao =10
De plus, on peut exprimer cette dilatation comme la différentielle, en coordonnées de Lagrange, du
vecteur position du point considéré:

Ar
€= —
A 2
lié & la vitesse a%du solide. I ¢
r{S,t) < position
Enfin, il exprime la vitesse u% par: gn)pla‘:cement ¢ {Lagrange)
inmua
—
7= Or | t

Ug

€
ot
. d = dési L a - . ~ .
ce qui sous-entend que 7 désigne un point “moyen” du milieu poreux, puisque ug est une vitesse moyenne.

1l combine ensuite, comme plus haut, les éqﬁations de continuité du liquide et du solide qui se déplace.
. . . , d dw d . .. .
Mais, au lieu de fournir le résultat dans (5.3.3), en 2L et —, (avec 0s = 0), il choisit comme inconnue i

, 8t di dt dt
et div U%.

s . . . . aU:S o,
Comme le tassement se fait & une dimension suivant z, il calcule la composante en z, , eXprimée

0

en coordonnées d’Euler, & partir de:

arzg

3 =¢,=alp en coordonnées de Lagrange
67'23 *

ot =u,s
z (Euler) = ¢+ r(&,1) (Lagrange)

Il obtient finalement:

Oouls a dp
0z ~ l+oa(p—p,) dt
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Dans le coefficient d’emmagasinement, a doit donc étre remplacé par . Ce terme devient

a
1+ a(p-po)
important & prendre en compte si a(p — p,) > 0,05, ce qui représente donc un tassement £, de plus de
5%. Cet effet est donc négligeable, sauf pour des cas particuliers de subsidences importantes (4 Mexico, par
exemple, les tassements diis aux pompages, dans une formation trés peu consolidée, ont atteint des valeurs
de plusieurs meétres).

Du point de vue théorique, cette différence de résultat provient du passage du systéme (5.3.6) des trois

compressibilités du volume total, solide et pores, aux relations linéaires en terme de dérivée de transport,
dw dp

i et —(—i—;—, fonctions de -‘-1-?, qui n’est pas entierement satisfaisant. Mais le résultat de Gambolati, plus

rigoureux, n’est pas transposable & trois dimensions.

Gambolati montre aussi que la variation de la perméabilité avec la variation de p (terme grad pg) que
nous avons négligée en simplifiant pour obtenir (5.3.9) est effectivement négligeable si I’épaisseur de 'aquifére
est inférieure a 10.000 m, et la variation de pression inférieure a 500 bars, ce qui est bien au-dela des gammes
habituelles.

Cependant, dans les sols trés compressibles, il faudrait probablement prendre en compte la variation de
K avec le tassement (quand les pores se referment), phénomeéne qui a été trés peu étudié.

5.5. AUTRES EQUATIONS DE DIFFUSIVITE

Nous avons traité les trois cas les plus importants. Cependant, il existe d’autres cas ol des équations
différentes existent:

- mouvement de I'eau dans la zone non saturée: voir § 9.1.2., Eagleson, Vachaud (these), Bear (1972 et
1979);

- équations exactes du mouvement de la surface libre: voir § 6.3.d., Schneebeli, Bear (1972);

- écoulements polyphasiques de fluides non miscibles: voir § 9.1., cours production I.F.P. et Bear (1972,
1979);

- écoulements de fluides miscibles de densités différentes: voir § 9.2., Bear (1972, 1979).

. , . Oh .
Nous donnerons au Chap. 7 des solutions en régime permanent (— = 0, la charge ne varie pas avec

ot
. e . . . . ,Oh
le temps) de ’équation de diffusivité, et au Chap. 8 des solutions en régime transitoire (a # 0, la charge

varie avec le temps).



Chapitre 6

LES SYSTEMES AQUIFERES

6.1. Types de nappes 6.1.4. Types de nappes en fonction
6.1.1. Nappes libres de la géologie
6.1.2. Nappes captives 6.2. Réserves des nappes
6.1.3. Milieux peu perméables 6.3. Conditions aux limites et

conditions initiales usuelles

Nous allons examiner rapidement les principaux types de nappes que l'on peut rencontrer dans la
pratique, les réserves que ces nappes contiennent, et enfin les conditions aux limites usuelles.

Mais d’abord, qu’est-ce qu’une nappe ? Margat et Castany, dans le Dictionnaire Frangais d"Hydrogéologie,
définissent une nappe d’eau souterraine comme “I’ensemble des eaux comprises dans la zone saturée d’un
aquifére, dont toutes les parties sont en liaison hydraulique”.

Un aquifére est alors un “corps (couche, massif) de roches perméables comportant une zone saturée
(ensemble du milieu solide et de I’eau contenue) suffisamment conducteur d’eau souterraine pour permettre
’écoulement significatif d’une nappe souterraine et le captage de quantités d’eau appréciables. Un aquifere
peut comporter une zone ndn saturée”.

Dans la pratique, une nappe est une abstraction: on isole par la pensée une “couche” d’eau limitée vers
le haut et vers le bas, et éventuellement latéralement dans l’espace, couche qui impregne un aquifere. Pensez
3 une “nappe de brouillard”.

Cette notion de nappe isolée s’oppose a la notion de communication verticale entre nappes par drainance,
dont nous parlerons plus loin, § 8.8.

6.1. TYPES DE NAPPES

6.1.1. Nappes libres

Nous définirons rigoureusement le terme de nappe libre au § 6.1.2. par opposition aux nappes captives.
Mais regardons d’abord des exemples de nappe libre.

a) Nappe de vallée.- Dans les climats tempérés, si I'on suppose le sol uniformément poreux et perméable,
I'on sait (Chap.1) que I'eau de pluie s’infiltre et vient saturer la roche jusqu’a un certain niveau, appelé
surface libre. On appelle nappe cette zone saturée, depuis la surface libre jusqu’a la base (par exemple, un
substratum imperméable).

Dans la nappe, I'eau circule vers les exutoires qui sont les points bas de la topographie (sources, riviéres
du réseau hydrographique de surface).
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Prenons pour exemple la nappe de la craie, dans le Nord de la France. L’aspect en coupe de la nappe

est le suivant:
Surface du sol

Surface libre
de la nappe

vallée séche

Surface de suintement

i -~
ligne de .
courent

ligne équipotentielle

Nous avons représenté sur la coupe les lignes de courant de I’écoulement et les lignes d’égale charge, que
I'on appelle lignes équipotentielles de I’écoulement (ou encore courbes isopiézes, courbes piézométriques,. . . ).

Si la perméabilité est isotrope, les lignes de courant sont orthogonales aux équipotentielles, d’aprés la
loi de Darcy.

Les vallées les plus profondes drainent seules la nappe, les autres vallées sont dites vallées séches.

L’exutoire n’est pas localisé: c’est toute une surface de la nappe qui affleure et ol I’eau sourd. On
Pappelle surface de suintement.

Dans le cas de la craie, il n’y a pas, a proprement parler, de substratum car la craie est par endroits trés
épaisse (plusieurs centaines de métres), mais seule la partie supérieure (sur 10 & 30 métres, par exemple) est
fissurée, altérée et perméable, la craie saine en profondeur étant trés peu perméable.

Le schéma précédent est en fait trés distordu: I’échelle verticale est 100 fois plus forte que 1’échelle
horizontale. Si I’on redessine la méme coupe avec la méme échelle dans les deux directions, on obtient:

exutonre

B jz ﬁiﬂWHH -I- H T
| T

On constate que les équipotentielles sont en fait pratiquement verticales: on fait souvent I’hypothése

qu’en pratique, les vitesses d’écoulement des nappes sont presque paralléles & la surface libre, sauf au voisinage
immédiat des exutoires et des lignes de créte.

Regardons maintenant une telle nappe de vallée en plan (cf. PL5). On lappelle justement nappe de
vallée parce que le drainage de la nappe se fait uniquement par les vallées. A plus grande échelle, on a donc
une succession de petites entités drainées chacune par une riviere.

On trace en plan la carte piézométrique qui représente, en principe, les lignes d’intersection des surfaces
équipotentielles avec la surface libre. Cependant, comme les équipotentielles sont en pratique proches de la
verticale, la carte piézométrique donne la charge en tout point de la nappe.

La ligne de partage des eaux entre chaque vallée (en pointillé épais sur la P1.5) est une ligne de courant
particuliére que I’'on trace a partir d’un point quelconque de ’exutoire pour enfermer la part de nappe qui
s’écoule dans le bassin ainsi délimité. Elle passe, bien siir, par tous les points hauts de la nappe. On I’appelle

généralement créte de la nappe. Elle est souvent assez proche de la ligne de partage des eaux de surface du
bassin-versant topographique.

Au cours de I'année, la nappe fluctue de quelques métres environ, car nous avons vu (Chap.1) qu’elle
n’est alimentée par les pluies qu’en hiver: elle tarit en été, et remonte aprés les pluies d’automne. Si la
nappe est profonde sous le sol (10 & 30 m), le temps de transfert de ’infiltration & travers le non saturé est

relativement long et la nappe est en étiage entre Octobre et Novembre, et en hautes eaux en Avril-Mai, par
exemple.
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On appelle encore “nappe phréatique” ce type de nappe (du grec phreatos, puits) qui veut simplement
dire que c’est la premiére nappe que l'on rencontre lorsque l'on creuse un puits, et qui est donc la plus
facilement exploitée.

b) Nappe de vallée en pays aride.- Le schéma précédent est généralement inversé: Dinfiltration de la pluie
est faible et bien inférieure & I’évapotranspiration. Dans les vallées, les crues des oueds temporaires aménent
beaucoup d’eau, qui peut s’infiltrer et alimenter la nappe: c’est leur source principale d’alimentation.

oued en crue

surface libre l

En plan, les oueds venus des montagnes peuvent s’écouler soit vers des zones d’épandage ol la crue
se perd, s’infiltre et s’évapore par la suite, soit vers des dépressions formant des lacs temporaires ou ’eau
s’accumule puis s’évapore, laissant des croiites salées en surface. On appelle ces zones des chotts ou sebkhas.

Les nappes phréatiques, dans les deux cas, s'écoulent généralement vers les mémes points, ou les eaux se
perdent et s’évaporent.

En pays tropical, on peut parfois observer une alternance des deux schémas d’alimentation, par la surface
ou par la riviére, entre la saison séche et la saison humide.

En pays trés froids, ol le sol est et reste gelé en profondeur, écoulement est limité a la partie supérieure,
entrainant des possibilités de solifluxion.

c) Nappe fluviale.- C’est la rappe libre sise dans les alluvions qui jalonnent le cours d’un fleuve. L’eau de la

nappe est généralement en équilibre avec celle du fleuve, étant tantot drainée par le fleuve, tantot alimentée
par lui.

Ainsi, en est-il par exemple de la plaine du Rhin, qui est un fossé d’effondrement comblé par des alluvions
récentes:

La puissance du comblement alluvial est par endroits de 'ordre de 100 m, avec des matériaux grossiers
(sables, graviers, galets) trés perméables. Ces matériaux sont saturés d’eau presque jusqu’a la surface du
sol, et constituent une des nappes les plus importantes de France.

Pratiquement, tout cours d’eau a déposé des alluvions le long de son lit, et est donc en liaison avec une
nappe alluviale. Celle-ci peut étre plus ou moins large par endroits, par exemple:
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__10—" Courbe isopiézométrique (I'équidistance est de 10 métres)

__ -3~ Courbe isopiézométrique intercalaire

. = ~ Courbe isopiézométrique hypothétique

.o ** Limites des bassins souterrains principaux

Limites des bassins souterrains secondaires

-3 Limite de la zone ou la nappe de la craie est captive sous les terrains tertiaires (sur la carte ne
figurent pas les zones ol la nappe est 1égdrement captiye sous les alluvions de fond de vallée)

Régions sans nappe de la craie

Limites du bassin houiller

-

P1.5 - Carte piézométrique de la nappe de la craie dans la région du Nord.
(Extrait, document BRGM, 1965)
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ligne équipotentielle

E:, riviére
Nroﬁl de charge de la riviére profil piézo de la nappe
-~

—
\
A Dentrée de la plaine alluviale, le niveau de ’eau dans le fleuve est supérieur a celui de la nappe: le
fleuve alimentant la nappe, les lignes équipotentielles sont serrées (écoulement rapide, divergent). Au centre
de la plaine, I’écoulement est plus lent: riviere et nappe sont en équilibre. A D’aval, I'inverse se produit, le

rétrécissement de la plaine entraine un drainage des eaux vers la riviére; c’est souvent une zone marécageuse,
la surface de la nappe est trés proche de la surface du sol et supérieure a celle du fleuve.

en plan

en coupe

On désigne parfois ces nappes par “nappe sous-fluviale” et leur débit comme le “sous-écoulement” du
fleuve (underflow en anglais, terme utilisé souvent en Afrique du Nord, ou encore inféro-flux).
b q 3

Ce type de nappe est encore dit “soutenu” car il est en liaison avec un plan d’eau (riviére ou lac).

Il peut arriver enfin que le lit de la riviére soit colmaté par des éléments fins interrompant cette liaison.
Clest surtout le cas des fleuves dont les débits sont régularisés par des barrages, et ou I'absence de crues
violentes empéche un décapage et une remise en mouvement des sédiments fins déposés.

d) Nappe non soutenue et nappe perchée.- C’est une nappe limitée vers le bas par un imperméable et qui n’est
pas en liaison avec un cours d’eau venant “soutenir” son alimentation. C’est le cas, par exemple, de la nappe
libre des sables de Fontainebleau, reposant, dans le nord de la région parisienne, sur le banc imperméable
des marnes 3 huitres (ce niveau manque au sud-est de Melun, et a Fontainebleau en particulier).

Sables de Fontainebleau

source
surface libre Ma.rnes 3
~ huitres

sources

ligne d'affleurement
des marnes &
huitres

équipotentielle
source

Les sources importantes se situent dans les vallées, les points les plus bas de la topographie du toit des
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marnes a huitres.
Si, sous le banc imperméable (ou peu perméable), soit ici les marnes 4 huitres, existe une nouvelle nappe
libre, par exemple dans le calcaire de Brie, la nappe supérieure est dite “nappe perchée”.

La nappe sous-jacente est en fait alimentée verticalement par des “fuites” de la nappe perchée a travers

son substratum (les marnes a huitres) peu perméable. On appelle ce phénoméne de “fuite” la “drainance”
et nous I’étudierons ultérieurement (§ 8.3).

6.1.2. Nappes captives

Ce terme s’oppose a celui de “nappe libre”, que nous n’avons pas encore défini.

Une nappe est dite captive si elle est surmontée par une formation peu (ou pas) perméable, et si la
charge hydraulique de ’eau qu’elle contient est supérieure a la cote du toit de la nappe:

Charge hydrau- y
ge hydrau Forage et niveau statique

lique de la - ———————— — ——
nappe dans le forage
/ Z
10it argile
neppe captive sable
mur? G 77 argile

Quand on fore un puits ou un piézomeétre dans une telle nappe, ’eau remonte brusquement dans I’ouvrage
lorsque 'on créve le toit imperméable de la nappe.

L’eau contenue dans la nappe est en fait comprimée 4 une pression supérieure a la pression atmo-

sphérique. On dit également que la nappe est “confinée” (nappe captive se dit “confined aquifer” en anglais,
nappe libre se dit “water table aquifer”).

Si cette pression est suffisante pour que I’eau remonte jusqu’a la surface du sol et jaillisse (soit charge
piézométrique supérieure a la cote du sol), la nappe captive est dite “artésienne” et le forage “artésien” ou
“Jaillissant”.

Cet artésianisme peut cependant disparaitre avec le temps si on exploite la nappe, par réduction de la
charge dans 'aquifere.

Par opposition a une nappe captive, une nappe libre est une nappe ou la surface piézométrique coincide
avec la surface libre de la nappe, et qui est surmontée par une zone non saturée.

Exemples:
. P . , . alimentation aux
Nappe captive des sables éocénes en Gironde (schéma): affleurements

exutoire

Zone

|
|
|
d'artésianisme |

Nappes superposées:

Dans I’exemple des sables de Fontainebleau sur les calcaires de Brie, la nappe de ces derniers peut
souvent étre captive par endroits.
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charge nappe libre Sables de Fontainebleau
. charge nappe captive Calcaires de Brie

..... (o oot

5 Sables de Fontainebleau i

Marnes a huitres
Marnes . I
vertes Calcaires de Brie

: [
T l

artie captive de la nappe des Calcaires |

|
|
|
be

Nappe libre devenant captive:

Voici, par exemple, la coupe schématique de la nappe des dolomies jurassiques prés de Brignoles (Var),
qui constitue le mur des exploitations de bauxite de la région, et pose de sérieux problémes d’exhaure:

Niveau piézometrique

nappe libre

Analogie entre une nappe captive et un perméamétre en U:

1l faut penser, dans une nappe captive, & un perméametre en U, dont voici la ligne de charge:

i

Importance de la captivité sur le dénoyage:
Il faudra toujours se rappeler que quand on rabat une nappe (c’est-3-dire que Pon fait diminuer sa
charge par des prélevements):
- on diminue ’épaisseur mouillée de la nappe pour une nappe libre, d’oli réduction de la transmissivité
(perméabilité x épaisseur mouillée) et de la section offerte & I’écoulement;
- on ne diminuera rien de tel sur une nappe captive; la section offerte & ’écoulement reste la méme et

la transmissivité aussi, tant que le rabattement n’entraine pas la surface piézométrique plus bas que le
toit de la nappe (auquel cas la nappe devient libre).

6.1.3. Milieux peu perméables

Ces milieux ne forment pas, 4 proprement parler, des aquiféres car on ne peut les exploiter pour en
extraire de 1’eau. Cependant, en régle générale, ils contiennent une nappe qui peut étre libre si la couche
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considérée affleure, ou captive si elle est profonde. En terrain peu ou trés peu perméable, il ne faut jamais
dire “il n’y a pas de nappe”, mais se souvenir que le milieu est vraisemblablement saturé d’eau, eau qui ne
s’écoule que trés lentement ou pas du tout, vu la tres faible perméabilité du milieu.

L’ouverture de travaux miniers, amenant une circulation d’air qui desséche le milieu, peut faire dis-
paraitre toute trace d’écoulement. C’est ainsi que, par exemple, les mines de sel souvent qualifiées de
totalement séches, peuvent dans certains cas étre considérées comme un milieu saturé en eau, le flux d’eau
qui y transite étant si faible qu’il s’évapore au contact des galeries.

Ces milieux jouent un trés grand réle dans de nombreux problémes ou ’eau qu’ils contiennent intervient.

Génie Civil: Consolidation, tassement,
poussées d’écoulement et stabilité.

Hydrogéologie: Alimentation des nappes profondes a travers les semi-perméables par “drainance”
(écoulements verticaux), voir plus loin, § 8.3.

On distingue généralement:

- les aquitards, ou semi-perméables, qui sont des horizons de faible perméabilité dans lesquels I’eau ne
peut pas étre prélevée de facon efficace par des puits, mais ol un écoulement non négligeable peut se
produire, amenant de ’eau par drainance aux aquiferes adjacents;

- les aquicludes, ou imperméables, qui ont une perméabilité trés faible si bien qu’aucun débit de drainance
significatif ne peut y prendre naissance a petite échelle (par exemple au cours d’un essai de débit), mais
qui, cependant, ne sont pas négligeables sur une trés grande surface.

6.1.4. Types de nappes en fonction de la géologie

a) Régions de socles (soit 1/3 de la France: Massif Central, Vendée, Bretagne, Vosges, Ardennes, Maures,
Estérel, Corse,...), majeure partie du bouclier africain.

Les roches sont cristallines, métamorphiques ou schisteuses. Elles sont tres peu perméables.

On rencontre de petites nappes locales dans les zones d’altération (arénes) ou dans les dépots alluviaux,
ou encore dans les zones fissurées.

Les ressources en eau souterraine sont faibles, entrainant un habitat dispersé. Il faut faire appel aux
eaux de surface pour avoir des débits importants. Mais en étiage sévere, celles-ci peuvent se tarir: voir les
problémes de la sécheresse en Bretagne pendant I’été 1976. Par de nombreux forages au marteau fond de trou,
on a pu mettre en exploitation, depuis 1976, de nombreux puits dans des régions granitiques, en Bretagne,
donnant de quelques m3/h & quelques dizaines de m3/h. Par exploitation de photos aériennes, on recherche
les intersections de zones de fracturation. En revanche, dans le Massif Central, une telle prospection a donné
de moins bons résultats: tout est fonction de la fracturation.

b) Régions montagneuses de terrains sédimentaires plissés:

Les nappes sont rares et fragmentaires, dues au morcellement des réservoirs. Leur étude se fait cas par
cas.

¢) Régions de plateaux sédimentaires calcaires:

C’est le domaine du karst: écoulement dans des fissures élargies, formant de véritables riviéres souter-
raines. Les circulations sont plus proches d’un systéme de drainage par chevelu de rivieres, mais souterraines.
Les eaux de surface communiquent d’ailleurs avec les eaux souterraines par de nombreux systémes de pertes
et de résurgences. Il peut cependant exister tout un réseau de fissures, plus ou moins élargies, jouant le role
de réservoir ou de nappe dans le karst, en liaison avec le systéme de drainage par chenal, s’il existe. Les deux
conceptions (“riviere souterraine”, “eau de fonds”) se sont souvent opposées dans le passé, alors qu’elles se
complétent. Ce réservoir d’eau de fond se situe en général en-dessous de la cote des exutoires.
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L’étude des régions karstiques est une branche tres particuliere de I'hydrogéologie. Voir en particulier
les travaux de I’Université de Montpellier (Pr. Avias, Drogue) et du CNRS a Moulis (Mangin, Bakalowicz).

Citons les plateaux du Jura, les Grands Causses, le plateau de Vaucluse avec la résurgence de la Fontaine
de Vaucluse, 'une des sources karstiques les plus importantes du monde. De tels systémes se retrouvent sur
le pourtour de la Méditerranée (Grece, Turquie, Libye), en Floride, etc. ..

d) Bassins sédimentaires:

Ce sont, en France, les bassins Parisien (150.000 km?) et Aquitain (50.000 km?). Ces bassins sont
constitués d’alternances de roches perméables et peu perméables. C’est la que se trouvent les nappes les
plus importantes et les plus étudiées. On rencontre d’abord une nappe libre, puis une succession de nappes
captives (jusqu’a 7 et plus en Aquitaine) séparées par des semi-perméables. En Afrique du Nord (Sahara,
Libye), le bassin sédimentaire du Continental renferme de nombreuses nappes.

e) Plaines alluviales:

Elles sont présentes le long de presque tous les cours d’eau. En étudiant la géologie des versants,
on peut reconnaitre les zones les mieux alimentées par les nappes éventuelles latérales. Par géophysique
(électrique ou parfois sismique), on peut rechercher les zones les plus épaisses, et les plus perméables (les
moins conductrices).

Ces nappes alluviales sont trés exploitées et souvent en danger d’étre contaminées par les pollutions,
soit accidentelles, soit venues du fleuve qu’elles cotoient.

f) Bilan grossier:

On estima que le débit de I’ensemble des nappes de France est de 280 millions de m3/j environ, soit 1/4
a4 1/5 des précipitations. Ce débit correspond a 60% du débit moyen annuel des cours d’eau.

L’exploitation actuelle des nappes est environ:
Nappes captives: 2,7 millions de m3/j
Grandes nappes libres: 4,4 millions de m3/j
Nappes alluviales: 6,0 millions de m3/j

g) Bibliographie hydrogéologique en France:

Pour la France, il existe un assez grand nombre de cartes et documents publiés, qui permettent de se
renseigner sur I’hydrogéologie d'une région. Au premier chef, il faut consulter la carte géologique au 1/50.000
ou au 1/80.000, qui décrit les formations, et posséde le plus souvent un paragraphe “hydrogéologie” dans
sa notice. La liste des documents suivants est publiée par le Bureau de Recherches Géologiques et Miniéres
(BRGM, BP 6009, 45060 Orléans Cédex) ot I'on peut également les acquérir.

- Cartes et atlas hydrogéologiques:

- Carte hydrogéologique de I’Europe (coédition UNESCO-BGR).
Cing feuilles publiées sur un total de 30 prévues. Disponibilité et limite figurent sur le catalogue des cartes et
¢ditions de P'UNESCO, obtenu sur demande adressée aux Editions du BRGM.

- Carte hydrogéologique de la France au 1/1.500.000, systémes aquiferes.
Une feuille au format 92x87 cm, disponible pliée ou a plat, accompagnée d’une notice d’une vingtaine de pages
(1980).
Congue selon une légende originale, cette carte délimite les principaux aquiferes, classés selon le régime et le
débit d’écoulement des eaux souterraines, leur comportement vis-a-vis de I’exploitation et leur relation avec les

eaux de surface. Des indications quantifiées sur I’alimentation des nappes et sur le débit d’étiage des cours d’eau
sont données.
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La notice explicative précise les principes et méthodes de cartographie et expose la traduction pratique des
conditions représentées pour la gestion des eaux souterraines. Elle fournit des informations régionales et générales
sur les ressources en eau souterraine de la France.

Cette carte s’adresse aux hydrogéologues, aux ingénieurs et aux spécialistes de ’évaluation de la gestion des
ressources en eau, aussi bien qu’aux chercheurs et aux enseignants.

Carte de la qualité chimique des eaux souterraines de la France & 1/1.000.000, par A. Landreau et B. Lemoine,
avec notice (1978).

L’objet de cette carte est de représenter la qualité chimique des eaux souterraines brutes en appréciant ’aptitude
de ’eau & satisfaire & différents usages (industriels, agricoles, alimentaires).

Carte du débit moyen des nappes d’eau souterraine de la France, & 1/1.000.000, par O. Bouillin (1970).

Carte des eaux minérales et thermales de la France, 3 1/1.000.000, par J.J. Risler (1975).

Cette carte replace les sources thermales et minérales dans leur cadre géologique. Plus de 500 sources, dont une
moitié sont autorisées par la réglementation, y figurent. A ’aide de signes conventionnels, on a pu représenter
leur chimisme (anions, cations), leur régime thermique et le type d’exploitation économique dont elles font
Pobjet.

Atlas des eaux souterraines de la France, couvrant les 21 régions. Un vol., 360 p., 152 cartes et coupes dont 104
coul. (1970) et son complément bibliographique 92 p. (1972).

Atlas des nappes aquiféres du-district de la région parisienne. Un atlas (90x50 cm), 60 cartes, un index
analytique et une notice explicative de 160 p. (1970).

Carte hydrogéologique du Bassin de Paris (1968), & ’échelle du 1/500.000. Deux feuilles indivisibles.
Carte hydrogéologique, & 1/200.000 des Bouches-du-Rhone (publiée par I’Agence de Bassin) (1975).
Carte hydrogéologique de la région Rhin-Meuse (publiée par I’Agence de Bassin) (1975).

Carte hydrogéologique a 1/100.000 de la région Champagne-Ardennes (en trois feuillets):
Reims, Mourmelon, Avize, Suippes

Rethel, Asfeld, Chateau-Porcien, Attigny

Vertus, Chalons, Vitry-le-Frangois, Fere-Champenoise.

Carte 4 1/80.000 de la région karstique nord-montpelliéraine, par H. Paloc, avec notice de 229 p. Mém. BRGM,
)
n®50 (1967).

Carte des “eaux souterraines” & 1/50.000.
Feuille disponible: Douai (1966).

Carte hydrogéologique 4 1/50.000.
Feuilles disponibles:

Amiens Altkirch

Creil Laon

Douai Evreux

La Crau (Istres-Eyguiéres) Hallencourt

Région grenobloise Beauvais

Valenciennes Grenade-sur-Garonne (1976)

Paris Toulouse-Ouest (1976)

Auxerre Bassin du Caramy et de I'Issole (Var) (1971)
Toulon (1975) Nord-Est Varois

Sete Esquisse du synclinal de Val Vins (Var)

Carte hydrogéologique des calcaires ferriferes du bassin lorrain a4 1/50.000 (éd. Samifer).
Feuilles disponibles:

Longwy-Audun-le-Roman (1976)

Briey (1977)

Chambley-Bussiéres (1979)

Nancy (1980).

Carte hydrogéologique du Bassin de I’Authion, en deux feuilles avec notice (1970).

Carte hydro-lithologique du Bassin de I’Adour, & 1/250.000, en deux feuilles éditées par I’Agence Financiere de
Bassin Adour-Garonne (1976).
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Carte hydrogéologique du Lot et des Causses du Quercy, a 1/100.000, en deux feuilles par J.C. Soulé (1976).
Notice de 50 p. environ.

Atlas hydrogéologique des eaux souterraines de la Gironde. 42 pl. 21x27 (1979).

Atlas hydrogéologiques départementaux. Sont parus:
— Seine-Maritime: une carte a 1/100.000, une carte 4 1/250.000, une carte & 1/25.000. Cet atlas est fourni
actuellement sans notice (1979).
— Somme: deux cartes & 1/100.000 en couleurs, une carte 3 1/25.000, une carte a 1/250.000. Une notice de
98 pages donne, entre autres, la liste des caractéristiques de tous les captages (1978).
- Eure: deux cartes a 1/100.000 en couleurs, une carte 2 1/25.000. Notice (1981).

Atlas des eaux souterraines des Pyrénées Orientales, 24 p. (1977).

Carte du coiit moyen de captage et de P’exploitation de I’eau souterraine dans la région Languedoc-Roussillon,
3 1/500.000, par H. Bonin (1978).

Voir également les Publications du CERGA, en particulier les atlas hydrogéologiques du Languedoc-Roussillon,
page 62, n°1650 et la suite.

Le bassin de la Seine et des cours d’eau normands (publié par I’Agence de Bassin Seine-Normandie).

Volume 1: Ressources d’eau et données hydrologiques. 6 fascicules, 658 pages, 1 atlas de 100 planches.
Volume 2: Besoins et utilisation d’eau. Pollution. 9 fascicules, environ 1300 pages + 1 atlas. Fasc. 1-2-8-4-6-8
parus, fasc. 5-7-9 a paraitre en 1980-81.

Volume 3: Essai de bilan et de planification des ressources et des besoins. Contenu précis a P’étude.

Atlas hydrogéologique & 1/50.000 du Languedoc-Roussillon. Publication CERGH-CERGA (Centre d’Etudes et
de Recherches Géologiques et Hydrogéologique de Montpellier).

Feuilles disponibles:

Pézenas (1969)

Agde (1969)

Béziers (1970) Montpellier (1970) Narbonne-Leucate (1970)

Lézignan-Corbiéres (1973) Arles (1972)

Atlas des ressources en eau du département de la Lozére. Publication CERGA.

Atlas géologique 3 1/200.000 du Languedoc-Roussillon et du Vivarais. Publication CERGH-CERGA.
Feuilles disponibles:

région des garrigues (1974),

Cévennes et Bas-Vivarais, vallée du Rhéne entre Pont-Saint-Esprit et la Voulte (1975),

région montpelliéraine et nimoise, zone littorale entre Rhéne et Hérault (1979).

Carte de la pollution des eaux superficielles du Languedoc-Roussillon par les détergents anioniques a 1/500.000
(1973). Publication CERGH-CERGA.

Carte hydrogéologique du massif des Coirons a 1/25.000. Publications CERGH-CERGA.

Cartes de vulnérabilité a la pollution des nappes d’eau:

Carte 4 1/250.000. Vulnérabilité a la pollution des nappes d’eau souterraine.
Feuilles disponibles:

Lyon (1975),

Valence (1979).

Carte hydrogéologique & 1/100.000 “Exploitation des réservoirs aquiferes - risques de pollution”.
Feuilles disponibles:

Montpellier (1973)

Basse vallée de I’Aude (1973)

Carte de vulnérabilité i la pollution, & 1/50.000.
Feuilles disponibles:

Nappe de la Crau (1974)

Nappe de la Moyenne-Durance (1974)

Nappe de la Basse-Durance (1973) en deux feuilles.

Carte de vulnérabilité & la pollution des nappes d’eau souterraine 4 1/50.000
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Feutlles disponibles:

Beaune (éd. SDAU) (1977) Pontarlier (1979) Besangon (1980)
Belleville (1979) Ruffec (1980) Grenoble (1980)
Chagny (éd. SDAU) (1977) Serrieres (1978) Montluel (1980)
Cognac (1980) Tournon (1979) Saint-Claude (1981)
Chalon-sur-Saéne (1978) Valence (1979) Vif (1980)

Dole (1978) Vienne (1978)

Givors (1976) Villefranche (1979)

Lyon (1976)

- Carte de vulnérabilité a la pollution de la nappe alluviale du Var inférieur & 1/20.000 (1974).

Atlas de géothermie:

0201

0202

0203

0204

0205

La Géothermie en France - BRGM - Energies Nouvelles (26™€ édition). Brochure de 72 pages, nbz fig. et
schémas (1978).

Brochure de vulgarisation indiquant d’une part les ressources de la France métropolitaine et, d’autre part,
I’exploitation et 'utilisation possibles de ces ressources.

Syntheése géothermique du fossé rhénan (Geothermische Synthese des Oberrheingrabens. Coédition BRGM-
Geologisches Landesamt Baden-Wurtemberg). Environ 100 p., 23 dépliants hors texte de cartes et de coupes.
(A paraitre courant 1980).

Atlas du potentiel géothermique du bassin Aquitain. BRGM et SNEA(P) 167 p., 38 pl. hors texte (1978). B.
Housse, Ph. Maget.

Réalisé par le Bureau de Recherches Géologiques et Miniéres et par le groupe SNEA(P), cet ouvrage présente
les formations aquiféres profondes du bassin Aquitain qui peuvent constituer des objectifs économiques en
géothermie de “basse énergie”. Il doit aider & promouvoir cette nouvelle source d’énergie en présentant aux
autorités régionales, ainsi qu’a tout utilisateur éventuel, une image claire des centres d’intérét.

Atlas du potentiel géothermique du bassin de Paris. BRGM-EIf Aquitaine. 125 p., 29 pl. hors texte (1976).
B. Housse, Ph. Maget.

Utilisation des nappes d’eau souterraine comme source froide des pompes & chaleur, région Rhone-Alpes. 1
carte & 1/250.000, deux brochures, 1980.

- MEMOIRES ET DOCUMENTS DIVERS -

Colloques et congres:

Colloque national “Les eaux souterraines et ’approvisionnement en eau de la France”, Nice, 27-28 Octobre 1977.
trois volumes, 697 p., nombreuz tableauz et figures (1977). 51 communications. Les eaux souterraines sont-elles
assez bien utilisées en France ?
Apres la sécheresse de 1976, il a paru nécessaire d’organiser une large discussion entre techniciens et responsables
sur les différents aspects de ce sujet:

théme 1: Ressources en eau souterraine de la France,

théme 2: Utilisation des eaux souterraines en France,

theme 3: Techniques de ’exploitation des eaux souterraines,

théme 4: Economie de exploitation et des utilisations des eaux souterraines,

théme 5: Conservation et gestion des ressources et réglementation des exploitations.

Rapports généraux du colloque national “Les eaux souterraines et ’alimentation en eau de la France”. Nice,
Octobre 1977, Bull. BRGM, sect. III, n®4-1979.

Mémoires du BRGM:

n°7.

n°20.

P. Elouard - Etude géologique et hydrogéologique du Guebla mauritanien et de la vallée du Sénégal. un vol.,
252 p., 81 fig., 28 pl. h.t., 8 pl. photo h.t. (1962).

M. Deffossez - Contribution a ’étude géologique et hydrogéologique de la boucle du Niger. un vol., 174 p., 22
fig., 7pl., 15 dpl. h.t., 2 cartes couleurs dpl. h.t. (1968).

R. Degallier - Hydrogéologie du Ferlo septentrional (Sénégal). un vol., 44 p., 29 dpl. h.t., 1 carte couleurs dpl.
h.t. (1962).

G. Guérin-Villeaubreil - Hydrogéologie en Cote d’Ivoire. un vol., 43 p., 80 dpl. h.t. (1962).



n°25.

n°41.

n°49.

r°50.

n°76.
n°93.

n°98.
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Cl. Mégnien - Observations hydrogéologiques sur le sud-est du bassin parisien. Les circulations aquiféres dans
le Jurassique et le Crétacé de I’Yonne. un vol., 287 p., 77 fig. (1964).

M. Audibert - Etude hydrogéologique de la nappe profonde du Sénégal “Nappe maestrichtienne”. un vol., 115
p., 48 fig., 5 pl., dpl. h.t. (1966).

J. Depagne - Etude hydrogéologique de la région d’Idini, en vue de P'alimentation en eau de Nouakchott
(République Islamique de Mauritanie). un vol., 79 p., 20 fig., 6 tab. (1967).

H. Paloc - Carte hydrogéologique de la France: région karstique nord-montpelliéraine. Notice explicative. un
vol., 229 p., 17 fig., 9 pl. photogr., 1 carte couleurs dpl. h.t. (1967).

Congres national d’Hydrogéologie (Journées Scheeller). Bordeaux, Mars-Avril 1969, 898 p. (1969).
Bibliographie Hydrogéologique de la France (1968-1977). un vol., 97 p. (1977).

Cl. Mégnien - Hydrogéologie du centre du bassin de Paris. 608 p., nbs fig. (parution Janvier 1980).
L’hydrogéologie du centre du bassin de Paris est abordée sous le double aspect de la prospection et de I’étude
générale des nappes aquiféres. Les difficultés rencontrées lors de la prospection et les méthodes employées
pour les résoudre sont décrites. L’étude des aquiferes multicouches et des relations nappe-eaux de surface
a été particulierement poussée. Les étapes de ]la minéralisation des eaux et la stratification hydrochimique
3 Dintérieur des aquiferes ont été étudiées en vue de connaitre le renouvellement de 1’eau souterraine et de
prévoir le cheminement d’éventuelles pollutions.

L’étude a porté également sur les principaux champs captants, les zones surexploitées, les régions particu-
litrement menacées par des pollutions. Un bilan nappe par nappe permet d’estimer les ressources encore
exploitables en fonction de la qualité souhaitée et des zones restant a explorer.

Un ouvrage indispensable & tout hydrogéologue amené & travailler dans le centre du bassin de Paris.

Documents du BRGM:

n°1.

n°9.

Hydrogéologie de la craie du bassin de Paris. Colloque régional, Rouen, 25-26 Mai 1978. Communications.
un volume, 627 p. (1978).
Un milliard de m® d’eau, en général de qualité, sont prélevés chaque année dans la craie qui couvre 25% des
bassins sédimentaires francgais. Le présent colloque a été une confrontation entre les différentes équipes qui
étudient ce réservoir depuis une vingtaine d’années.
Quatre thémes sont étudiés:
- Réservoirs et ressources,
- Qualité chimique des eaux souterraines et pollution,
- Technique de prospection et d’exploitation,
- Utilisation des eaux souteraines.
Le texte intégral des communications est donné.

Hydrogéologie de la craie du bassin de Paris. Colloque régional, Rouen, 25-26 Mai 1978. Rapports généraux,
débats, conclusions, 15 p.

1.1. Collin - Les eaux souterraines de la plaine Sadéne-Doubs.

318 p., env. 110 fig., nbr tabl. (1979).

Le travail débute par une révision des formations Plio-Quaternaire qui constituent les aquiféres. Il se poursuit
par lanalyse du fonctionnement hydraulique du systéme, trés marqué par le passé récent des mises en place
des cours d’eau et par les aménagements anthropiques. Un grand complexe chimique exploite ces nappes, mais
aussi les pollue. De ce fait, toutes les techniques de simulation et de prévisions sont-elles appliquées en vue de
la sauvegarde de la ressource. Parallélement au développement de la monographie est conduite une réflexion
méthodologique (adéquation des techniques & la résolution des problemes posés au praticien).

J. Person - Interventions réglementaires du géologue agréé en vue de la protection des eaux destinées a
P’alimentation humaine. 193 p. (1979).

Le colloque sur la protection des eaux destinées a l’alimentation humaine (Orléans, Mars 1977) a mis en
évidence la nécessité de préciser les interventions du géologue agréé en matiére d’eau et d’hygiéne publique. Une
instance de réflexions s’est réunie a deux reprises au cours de 1’année 1978 et elle a élaboré des recommandations
pour I’accomplissement de ces missions.

Les données de base ainsi rassemblées apportent une orientation nouvelle a la conception et a ’établissement
des périmétres de protection. Elles sont complétées par les extraits des textes législatifs, ainsi que par une
analyse de la réglementation.
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n®15. A. Desplan - Les réactions géochimiques lors de I’exploitation d’un doublet géothermique. 152 p., 26 fig., 6

pl. photos (1979).

Ce travail qui concerne l'influence de la géothermie sur les interactions eau-roche s’articule en deux parties:

- aspect théorique des réactions chimiques en cause;

- aspect expérimental. D’une part, 'existence des réactions est vérifiée, et on a observé leurs conséquences
sur des échantillons du réservoir. D’autre part, on a établi les rapports des réactions avec le déplacement
du fluide par I'intermédiaire de la cinétique.

F. Parascandola - Cartographie de la vulnérabilité des eaux souterraines a la pollution. Effets d’échelle. env.

80 p., 5 pl. cartogr. couleurs (G paraitre en Avril 1980).

Ce document précise, en vue d’une représentation cartographique, la notion de vulnérabilité des eaux souter-

raines a la pollution. Il présente et analyse en détail, grice a de nombreux exemples, la méthodologie car-

tographique a I’échelle du 1/25.000 et 1/50.000 ainsi que les différentes utilisations des cartes dans le cadre
d’une meilleure protection et d’une gestion optimale des ressources en eaux souterraines.

Mémoires du CERGA (Montpellier:

T.I - J. Avias et al. -Documents sur ’hydrogéologie en territoire périméditerranéen. 127 p., 13 cartes, 15 pl.

(1964).

T.IILIV - P.J. Combes - Recherches sur la genése des bauxites dans le nord-est de ’Espagne, le Languedoc et
I’Ariege. 875 p., 72 fig., 28 tabl., 16 pl. phot., 1 carte géol. (1969).

T.V - Documents sur ’hydropollution, I'hydrologie mathématique, l'information appliquée a I’hydrochimie,
I’action des eaux sur les roches. 108 p., 21 fig., 2 pl. phot., 10 tabl. (1971).

T.VI fasc. 1. - J. Avias - Réflexions sur le réle de I’hydrogéologie et de la paléohydrogéologie dans la genese, le
remaniement et la destruction des gites minéraux en général et des gites métalliféres stratiformes en particulier.
16 p., 2 pl. (1971).

T. IX fasc. 2 et 3 - Contribution a I'étude de P’aquifére karstique de la source du Lez (Hérault). 240 p., 72 pl,,
2 cartes, 12 pl. photo (1975).

T.X fasc. 1 et 2 - C. Bezes - Contribution a la modélisation des systémes aquiferes karstiques. Etablissement

du modéle BEMER, son application a quatre systemes karstiques du Midi de la France. 137 p., 43 pl., 7 cartes
(1976).

T.X fasc. 3 - J.L. Lacas - Introduction a la méthodologie d’étude et d’utilisation des champs hydrothermiques

des aquiféres karstiques, d’aprés I’exemple du site de 'exsurgence de la source du Lez (Hérault). 68 p., 26 pl.,
1 pl. photo, 1 carte (1976).

T.X fasc. 4 - L. Rouquet - Contribution a 1’étude hydrogéologique de la région médiane des Grands Causses -
Gorges du Tarn et de la Jonte - Causse Méjean - Causse de Massegros. 102 p., 81 pl. et cartes (1976).

T. XI- H. Erre - Contribution a I’étude de I’hydrogéologie des Corbiéres orientales karstiques et pseudokarstiques
et des émergences littorales des cotes calcaires du Languedoc-Roussillon (Aude, Pyrénées Orientales). 213 p., 2
anneres, 82 fig. (1977).

T. XII - P. Cabrol - Contribution a ’étude du concrétionnement carbonaté des grottes du sud de la France.
Morphologie, genése, diagenése. 150 p., 20 pl. photos noir et blanc, 42 pl. dessin, 2 pl. couleurs (1978).

n® 13 M. et P. Ambert et al. - Le Causse de Blandas et les Gorges de la Vis. Etude géomorphologique. 100 p.
environ, 18 pl. de fig., 4 pl. photos noir et blanc, 1 carte h.t. & 1/25.000 (1978).

n® 14 G. Fabre - Signes spéléologiques conventionnels synthétisés (Union Internationale de Spéléologie, Com-
mission de Cartographie et de Topographie). 30 p. et pl. environ (1978).

n° 19 - Actes du Symposium international sur les implications de I’hydrogéologie dans les autres sciences de la

terre (1978).

6.2.

RESERVES DES NAPPES

a) Nappes libres

Si I’on rabat d'une hauteur Ah la surface libre (ou la charge piézométrique) d’une nappe libre:
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le volume d’eau dégagé est bien évidemment le produit du volume balayé par la surface libre par la porosité
de drainage wq de la nappe.

Ce volume n’est cependant pas immédiatement disponible: il faut laisser au profil d’humidité de la zone
non saturée le temps de descendre de la hauteur Ah:

4

wgq = porosité de drainage o B t—

teneur en eau
saturation

Si le profil final est une translation du profil initial, le volume libéré est bien wygAh par unité de surface.

Le temps mis au profil pour se déplacer est fonction de la finesse du milieu poreux: voir, par exemple,
le tableau des expériences de King, § 2.3.c.

La réserve d’une nappe libre est donc donnée par la différence:
- du niveau piézométrique actuel,
- avec le niveau piézométrique auquel on accepte de rabattre la nappe,
multipliée ensuite par surface et porosité. Par exemple:

[ Niveau piézometrique
actuel

Niveau piézométrique rabattu
maximum (ce serait ici, par exemple,
le niveau auquel se stabiliserait la
nappe naturellement si elle n'était
plus alimentée)
On pour-ait cependant fixer un autre niveau piézométrique rabattu maximum (par exemple par la
profondeur des puits que I’on accepte de forer. .. ).

Les réserves d’une nappe libre sont donc aisées a définir.

b) Nappes captives

Imaginons un volume élémentaire de nappe captive dont nous allons baisser la charge hydraulique:
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Charge piéz'ométrique 1
charge piézométrique 2

e

An ] L7

]
A=

L

|

i

«— couche confinante imperméable (toit)

-— nappe captive

«— couche confinante imperméable (mur)

La variation de charge Ah n’entraine aucun dénoyage de la nappe captive. Cependant, nous avons vu
au Chap. 5, en établissant I’équation de diffusivité pour une nappe captive, que cette diminution de charge
va entrainer une “production” d’eau sous I'influence de deux phénoménes (voir § 5.3.):

- décompression de I’eau: terme wp; (coefficient de compressibilité de 1'eau: w = porosité totale);
- tassement du milieu poreux: terme a —wf, (coefficient de compressibilité de la matrice poreuse, moins
w fois le coefficient de compressibilité des grains solides).

L’ensemble de ces deux effets est combiné dans la définition du “coefficient d’emmagasinement”:

S = pwge(B - B, + g)

e = épaisseur de la nappe,
S est sans dimension.

Par définition, par unité de surface (dans le plan horizontal) de nappe captive, le volume d’eau libéré
par la variation de charge Ah est:

V =SAh

Autrement dit, le coefficient d’emmagasinement S joue, pour une nappe captive, le méme réle que la
porosité de drainage wqy pour une nappe libre.

La réserve d’une nappe sera le produit du coefficient d’emmagasinement S par la surface (en plan) de
la nappe et par la différence:
- de la hauteur piézométrique actuelle,
- et de celle a laquelle on accepte de rabattre la nappe captive.

Cependant, ce coefficient S est environ 1.000 & 10.000 fois plus petit que la porosité de drainage wy. Par
exemple, pour une nappe captive: '

niveau piézometrique actuel réserves

. . . sol
niveau piézométrique \

Il faut bien voir que la surface balayée par le niveau piézométrique ne représente rien de réel: ici, par
exemple, elle se situe en partie dans ’air (nappe initialement artésienne), en partic dans les premiers métres
du sol.

Enfin, il ne faut pas oublier que si I’on rabat le niveau piézométrique d’une nappe captive en-dessous
du toit de la nappe, celle-ci devient libre: la réserve supplémentaire ainsi mobilisée se calcule comme celle
d’une nappe libre ordinaire. Par exemple:
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Si on rabat la nappe des dolomies de Brignoles de (1) & (2), le volume d’exhaure est I'aire A multipliée
par la porosité de drainage plus I’aire B multipliée par le coefficient d’emmagasinement.

6.3. CONDITIONS AUX LIMITES ET CONDITIONS INITIALES USUELLES

Nous avons établi, au Chap.5, I’équation de la diffusivité, qui est une équation aux dérivées partielles

- L h . , ... ,0Oh
de type elliptique en régime permanent (- = 0) ou parabolique en régime transitoire (= # 0). Nous
venons maintenant de voir les différents types de nappes que ’on rencontre en pratique, et qui sont donc les
“domaines” ot nous allons chercher a intégrer ’équation de la diffusivité.
Pour ce faire, il nous faut cependant préciser d’abord les “conditions aux limites” de ces domaines
d’intégration. On connait, en mathématique, trois types de conditions aux limites:

- les conditions de Dirichlet, qui portent sur la variable: h imposé;

- . e . oh . ,
- les conditions de Neumann, qui portent sur la dérivée 1° de la variable: n imposé;
n

. . . oh h . ,
- les conditions de Fourier, qui portent sur h et —— : h + aa—‘ imposé.

on on

Nous y ajouterons un quatrieme type: les conditions de surface libre ou de suintement, qui sont des
conditions aux limites doubles. Puis nous examinerons le probléme des conditions initiales.

a) Limites & potentiel imposé

On impose des conditions de Dirichlet sur une limite si la charge hydraulique & la limite est indépendante
des conditions de circulation dans la nappe.
Ce sera généralement le contact d’une nappe avec un plan d’eau libre (mer, lac, riviere,.. -

sol
surface libre

x rivitre

Le long du contact (A) nappe-riviere, le potentiel (la charge hydraulique) est constant et imposé par la
cote de I’eau dans la riviere.

La riviére peut aussi bien alimenter que drainer la nappe.

En plan, le cours d’une riviére peut ainsi constituer une limite a potentiel d’une nappe; la charge dans la

riviere varie bien sir le long de celle-ci et, éventuellement, au cours du temps, mais ¢’est une donnée exogéne
a la nappe.

Un exutoire de nappe (ligne de source) peut également étre considéré comme une limite & potentiel
imposé, celle de la cote d’eau dans la source, tant que la nappe s’écoule vers P’extérieur.
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a potentiel imposé, tant que le taux d’infiltration de ’eau de pluie sur les affleurements est supérieur au flux
précipitations

102
Les affleurements d’une nappe peuvent également étre considérés, dans certains cas, comme une limite

)
excés el .
infiltration

d’eau s’écoulant vers I'intérieur de la nappe.
niveau pigzo o= = == ==

Autrement dit, la nappe est supposée étre toujours “gorgée d’eau” sur ses affleurements, ’excés d’eau

infiltré étant drainé par un réseau de riviéres en surface.

b) Limites & flux imposé
C’est une condition de Neumann. En effet, imposer une valeur du gradient de charge normal a la limite,
oh 0h o
T — sur cette limite.

revient, d’apres la loi de Darcy, & imposer la valeur du flux: —1(51—1 ou: —T=

on

On distingue:
- les limites & fluz nul: — = 0. Par exemple, le contact d’'une formation aquifere avec un imperméable:

(B)\ Faille par exemple

|

- les limites & fluz imposé non nul:
Par exemple, un affleurement dans une zone ol le taux d’infiltration de la pluie est inférieur aux
précipitations

possibilités “d’ingestion” de la nappe:

niveau piézo
infiltration

C’est le taux d'infiltration de la pluie qui fera le flux entrant.
Un prélevement a débit imposé dans un ouvrage (puits, tranchée,. .. ) constitue également une limite

a flux imposé:
L/ébit Q
/////////_/////_/_///

_Z////////////////J
; 1 L(F)
o

Oy
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/ Ké’lda = Q
(F) 611

Enfin, le contact entre deux aquiféres contigus & perméabilité différente peut, dans certains cas,
atre traité comme une limite & flux imposé, si le contraste de perméabilité est trés élevé. En effet,
on peut écrire 4 la limite, quelles que soient les perméabilités K, et K, supposées isotropes:

hy = hy (égalité des charges)
, 6h , Oh sy
I\.anl = I&g—af- (égalité des flux)

On peut de plus apprécier 'angle de réfraction de la vitesse U. Comme h; = hy quel que soit le point
P du contact 1-2, on peut écrire:

ohy _Oh:  , . 0k
B - Bm ; CopM /e U; = =K; 3n

soit:
Uy sin oy Us sin a9

K 1 Ky

En outre, I’égalité des flux peut s’écrire:
U, cosay = Us cosas
On en tire alors:

tgay _ tgap
.Kl - 1\’2

Pour en revenir 2 la notion de conditions aux limites, si le domaine 2 auquel on s’intéresse est en contact
par endroits avec un domaine 1 & perméabilité beaucoup plus faible:

K< K,

On peut, dans certains cas, admettre que les écoulements dans le milieu 1 ne sont pas perturbés par
- , Ohy Sy g . . -
ceux du milieu 2: le flux K, B arrivant a la limite est donc une donnée pour le probléeme dans le milieu 2.

C’est, par exemple, souvent le cas pour les écoulements d’une nappe de coteau latérale (milieu 1) vers une
nappe alluviale trés perméable (milieu 2).

c) Conditions de Fourier

Imaginons une riviére drainant (ou alimentant) une nappe libre, mais dont le fond serait colmaté par
une couche de vase peu perméable.
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riviere, cote h; -

nappe, charge h
7 -

surface libre

vase, perméabilité K’, épaisseur e’ .. 3quifére, perméabilité K

La différence de charge Ah = hiiviere = hnappe crée le gradient nécessaire a 1’écoulement d’un certain
débit ¢ par unité de surface de contact nappe-riviere d’apres la loi de Darcy.

h .-
g= K’%— = K’E———h-

el
Mais, toujours d’apres la loi de Darcy, ce débit q évalué dans ’aquifere est donné par:
=—-K—=—
7 on

T normale a la surface de contact orientée vers la riviére.

Par conservation du flux & la traversée de l'interface AB, on peut donc écrire:

h q -1
——I\'a—- + {\—h = ih,.
6’) e’ e’

ce qui est, par définition une condition de Fourier.

d) Surface libre

Deux conditions définissent une surface libre:
- p = pression atmosphérique sur tout point M de la surface libre.

Exprimé en charge, on prend par convention 0 pour la pression atmo-
sphérique, et on écrit:

h=2z2 (charge hydraulique en M égale a la cote en M)

de plus, la surface libre est une surface & flux nul si la nappe n’est pas alimentée par sa surface:
oh
on ~

C’est donc une deuxiéme condition imposée & la méme surface.

0

- Parfois cependant, la nappe est alimentée par sa surface libre, et le flux qui la traverse est donné:

Oh
—=a

3 n normale orientée vers I’extérieur
n
Il en va de méme si une évaporation reprend de I’eau de la nappe (a est alors négatif).
Tout le probléeme de la surface libre est que l'on ne connait pas a priori sa position: on est amené a
rechercher, par approximations successives, une surface dans I’espace qui vérifie simultanément:
h=z
Oh

— =a

on
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Ce probleme est donc assez délicat. On se donne d’habitude a priori une position estimée de la surface
libre, ce qui délimite le domaine d’intégration. On fixe sur cette limite la charge hydraulique (h = z) et on

. . , . , ., Oh . .
vérifie, aprés intégration de I’équation, que le flux calculé K —— est correct. S’il ne Vest pas, on modifie dans
n
un sens souhaitable la position de la surface libre et on recommence le calcul.

Une autre fagon de résoudre le probléme est de ne pas considérer la surface libre comme une limite de
I’écoulement, mais de représenter dans un méme continuum la nappe saturée et la zone non saturée sus-
jacente jusqu’a la surface du sol. Il faut alors résoudre I’équation de la diffusivité du milieu non saturé (voir
§ 9.1.). La surface libre est alors obtenue comme le lieu des points ot la pression est nulle.

En régime transitoire, ’équation de la diffusivité dans une nappe limitée par une surface libre s’écrit,
pour un milieu homogeéne:

0%h 6%h 0%h
Kegm * Koz + Mo

C(O6r\® . (8r\?  (6h\® 0k dh
K, (73;) + K, (‘5‘&) + K, (5;) —wa-*'(f(,—q)-a—z—q

sur la surface libre, ot ¢ est le flux (volume par unité de surface horizontale, par unité de temps) des échanges

entre la nappe et ’extérieur (évaporation, infiltration) a travers la surface libre, compté positivement s'il est
extrait.

= 0 dans la nappe

e) Surface de suintement

Quand l’eau d’une nappe sourd vers I’extérieur, le long d’une ligne d’émergence:

la surface de contact (S) est dite surface de suintement. La condition est alors:

h=z (car la pression est par définition égale a la pression atmosphérique)
Oh . L, . ;
n <0 (si n est orienté vers I’extérieur). En effet, le flux de la nappe est sortant.

La surface de suintement pose le méme genre de probleme que la surface libre: bien que l'on connaisse
la cote z le long de la surface de suintement, on est obligé de rechercher par approximations successives les
points A et B oli commence et s’achéve respectivement la surface de suintement et ou débute la surface libre.

On impose généralement la position de la surface, et on vérifie ultérieurement que le flux est bien sortant.

f) Absence de conditions aux limites

On peut enfin, dans certains cas, s’abstraire des conditions aux limites quand on suppose le domaine
d’intégration infini. Les conditions aux limites sont alors rejetées a I'infini sans que soit précisée leur nature.

Ce genre de situation est trés souvent utilisé pour rechercher des solutions analytiques de ’équation de
diffusivité, tandis que les méthodes numériques ou analogiques sont mieux adaptées au cas des conditions
aux limites fixes et connues. Nous en verrons des exemples par la suite.
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g) Conditions initiales

. . Oh , . . .
Rappelons enfin que, pour les problemes transitoires (— # 0, équations paraboliques), il faudra de plus

définir les conditions initiales du probléme, soit la valeur de la charge h en tout point du domaine pour ¢ = 0.



Chapitre 7

SOLUTIONS EN REGIME PERMANENT
DE L'EQUATION DE DIFFUSIVITE

7.1. Propriétés générales de I’équation de 7.3.  Solutions & 2 dimensions en
diffusivité . écoulement radial

7.2. Ecoulement paralléle: 1¢7€ solution 7.4. Solution élémentaire en coordonnées
en régime permanent. sphériques

7.5. Potentiel complexe a deux dimensions

7 1. PROPRIETES GENERALES DE L’EQUATION DE DIFFUSIVITE

a) Unicité de la solution

Soit D un domaine d’intégration donné de ’équation de la diffusivité, muni de ses conditions aux limites
et initiales. B

On démontre, en analyse, que si h vérifie ces conditions aux limites et initiales, et si h vérifie de plus

I’équation de diffusivité:

div (K grad h) = S,%g +9q

alors h est en général la solution unique du probléme. Ceci est vrai en régime permanent comme en régime
transitoire.

b) Principe de la superposition

Une remarque fondamentale est nécessaire avant d’aborder la résolution de l'équation de diffusivité:
c’est sa linéarité en h.

En effet, dans un domaine D 4 limites fixes dans I’espace, ou infini, I’équation:
T 0h
di dh =8 —
iv (X grad h) 5 5 +q
est linéaire en h et ¢. Donc, si (hy,q1) et (ha,¢2) sont deux solutions particuliéres de I’équation de diffusivité

vérifiant les conditions aux limites données, alors ahy + Bh; est solution de la méme équation, avec les débits
aqy + Bqa, et les conditions aux limites qui en résultent.

- Exemple: Supposons que, dans un domaine D, une nappe en écoulement en régime permanent vérifie:
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~div (T grad h,) = ¢,

Si I’on perturbe cet écoulement par la mise en route, par exemple, d’un pompage au débit ¢ au temps t = 0
dans un point donné, la distribution des charges hydrauliques h dans 1’aquifére sera solution de I’équation:

div (T grad h):S-g—itl+q,,+q

h vérifiant les mémes conditions aux limites que h,, et ayant pour condition initiale h = h,.

Définissons alors le “rabattement” dans la nappe par:

s=h,—h

En substituant h = h, — s dans [’équation précédente, il vient:

div T grad (hy = s)) = S (ho =) + 5 +4
Du fait de la linéarité, ceci s’écrit:

ah"—sﬁ+ +
i ot T T4

div (T grad h,) — div (T grad s) = S

. . . L. 0h L .
soit encore, en tenant compte de la premiére relation que vérifie h,, et sachant que —BTO = 0 (régime

permanent):

Os
T
Le rabattement s vérifie I'équation de la diffusivité avec les conditions suivantes:

div (T grad s) = S

- initiales 1 s=0 pourt =0

- limites & potentiel imposé h = constante

—s=0 puisque h = h, — s = constante
T . , Oh
- limites & flux imposé B = constante
n
Os . oh  Bh, Os
——=0 puisque — = —— — — = constante.
on n  dn  On

Autrement dit, le rabattement s di a la mise en route du pompage ¢ vérifie, dans le domaine D, une
équation dont les conditions aux limites et initiales sont bien simplifiées par rapport au probléme initial. De
plus, au pompage aq correspondra le rabattement as: par le calcul d’une seule solution s du rabattement
pour un débit g donné, on est capable de donner une infinité de solutions h = h, — as au probléme du
pompage a un débit quelconque, puits distincts, etc. ...

On pourra de méme superposer l'influence (en rabattement) du pompage dans plusieurs puits distincts,
etc...

Nous utiliserons trés souvent cette propriété de linéarité pour superposer des solutions connues (principe
des images par exemple) ou méme forger une nouvelle solution par intégration d’une solution donnée.

Il faudra se souvenir cependant que 1’équation de la diffusivité n’est linéaire, a strictement parler,
qu’a trois dimensions ou a deux dimensions (en plan) pour une nappe captive; pour une nappe libre, la
transmissivité T peut varier avec la charge h, entrainant la non-linéarité de I’équation et I'impossibilité
d’appliquer rigoureusement le principe de superposition.

De plus, en coupe, on ne peut appliquer ce principe pour une nappe libre, car la position de la surface
libre varie et le domaine d’intégration n’est plus fixe.
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Les problémes de nappe libre sont en conséquence plus délicats A traiter. Nous verrons plus loin que la
meilleure facon de les traiter est parfois de prendre en compte la zone non saturée sus-jacente. Le probleme
de la non-linéarité n’en est pas pour autant résolu.

¢) Anisotropie
Nous étudierons principalement des solutions analytiuques en terrain homogene isotrope. Les terrains
anisotropes peuvent se ramener & un probléme équivalent isotrope par changement des coordonnées.

Si Kz, Ky, K, sont les trois directions principales d’anisotropie, la loi de Darcy et I’équation de diffusivité
s’écrivent (ces perméabilités étant homogénes dans I’espace):

_ _p. o —_p oh() — _f, 2
{U, =-K, & U, = -k, &0, =-K, ¢
- 3%h - 3%h - 3%h _ dh

Kz 555 + Ky 3y? +K: 553=5: 5

Changement de coordonnées:

oo JE, _ [E . X,
“VE, YEVEY TEVRS
ott K est un coefficient quelconque ayant les dimensions d’une perméabilité:
0h _Oh dx _ [K; Oh
gz’ ~ 9z dr' ~ V K Oz

8%h ] (8h) dr K, 8%*h

- or ) de ~ K a1

et

8z~ Or

L’équation de diffusivité s’écrit donc:

0%h . 8°h  8%h _ S, 0h

Oz t 0y + 9:2 ~ K ot
Soit une équation de Laplace ordinaire dans le nouveau systeme d’axe. 1l faut remarquer qu’avec
I’anisotropie disparait I'orthogonalité des équipotentielles et des lignes de courant dans le systéme de coor-

données réelles zyz, mais qu’il subsiste dans le systéme zy’2": les composantes de la vitesse dans le nouveau
systéme sont:

[ Gl I — N
Ul . 37 , Ul=-K5

On en déduit que:

[ K | K [K
Us =/ —U. , U, =y/=2U, , U, =+/—=U,
’ K ° K Y : K ¢

Si ’on calcule le flux Q' du vecteur U’ a travers une surface quelconque £':

___*l
Q = U . wdo' = | (UpJi+UyJy+ U, J3)dudv
El EI

J! étant le cosinus de la normale & X', et uv des coordonnées paramétriques quelconques de la surface I'.

On s’apercoit que si I'on cherche a calculer le flux du vecteur T dans la surface homologue ¥ définie

par les mémes coordonnées paramétriques uv, on obtient les relations suivantes entre les Jacobiens (cosinus
directeurs) J; et Jj des deux surfaces ¥ et L'
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D(y'?') K? D(z,y)
! —_ — —
N= By TV ER avee U= B

En remplagant U] par U, dans l'intégrale ci-dessus, on voit que:

,_ [ K3 _ [K.R,K. ,
C=VEREC o C=\y~—%s ¢

qui donne la relation entre les débits dans le systeme anisotrope et le systéme isotrope équivalent. Pour que

ces débits soient identiques, il suffit donc de prendre K = /KKy K,. Le méme probléme se poserait pour
Ss si 'on prenait une valeur différente pour K.

7.2. ECOULEMENT PARALLELE: PREMIERE SOLUTION EN REGIME PERMANENT

Une nappe en écoulement parallele (ou uniforme) est une nappe ou la vitesse est une constante (en
intensité et en direction) en tout point. La charge vérifie:

h=az+by+cz+d
qui est une solution de: V2h=0
et qui donne bien une vitesse constante: U, = —Ka,U, = -Kb,U, = - K,
On identifie les constantes en fonction des conditions aux limites.

Une expression polynomiale du 2°™¢ degré est solution du probleme V2h = g (infiltration constante).
La vitesse n’est, bien sur, plus uniforme.

7.3. SOLUTIONS A DEUX DIMENSIONS EN ECOULEMENT RADIAL

a) Solution élémentaire de Dupuit
En coordonnées polaires (r,0) & deux dimensions, le laplacien s’écrit:

o, 10 ( 0h 1 6%h
”—;E("a—r> 362

. . . , d°h
Une solution élémentaire du probleme est celle ne dépendant que de r: ( = O) :

862
10 oh
iy (5‘) =0

C s ., oh
Ceci s’integre aisément: r—=a
or
soit h=alogr+b

a et b constantes,
Log = logarithme népérien.

Si nous regardons cette solution en plan, c’est un écoulement convergent radialement vers I'origine:
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&

Les équipotentielles (h constante) sont des cercles. Si on calcule le flux traversant une équipotentielle

donnée 4 la distance r de l'origine, d’apreés la loi de Darcy:

o 0h
flux = /ﬂ/«Ta— d® = 2lITa = constante = Q
0 Tr

Ce flux constant représente donc le débit Q retiré de la nappe au point origine, par exemple dans un

forage de rayon r, donné:

| l Forage rayon rg débit Q
. ; RN l | «———"nappe captive . .’

——
- -
e T e

La solution élémentaire ci-dessus est donc celle d’un puits dans une nappe captive. La constante a est

donnée par le débit du puits d’aprés I'intégrale du flux:

Q

‘=T

La constante b est donnée par les conditions aux limites.
La condition & la limite la plus simple est d’imposer la valeur de h a la distance R de 1'origine:
h=H , r=R

Log R Log: Népérien

) _ Q
alors: b=H SIT

En définitive, la charge h au voisinage du forage est donr e par:

Q r .
h(ry— H = —— -
(r)-H ST Log B Formule de Dupuit

Cette formule correspond exactement au probleme du “puits dans I'ille”: la condition a la limite h =
H,r = R ne se trouve vérifiée que pour une nappe captive dans une ile circulaire:
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l Forage, débit Q

h =H

/ {mer ou lac)
h (r)

Dans la pratique cependant, un forage dans une nappe quelconque se stabilise souvent au bout d’un
temps plus ou moins long (obtention d’un régime permanent) pour diverses raisons que nous examinerons

par la suite (limite de réalimentation, drainance). Le profil de la charge en fonction de la distance au forage
est alors une fonction logarithmique:

— - charge initiale dans la
nappe (avant le pompage)

(]
[}
]
!
!
'
[}
I
!
1

R
» logr

ce qui permet de définir un “rayon d’action fictif” R qui correspondrait 2 la distance du forage ou le rabat-

tement (h;,:4:.) — h) serait nul. Cette notion n’a pas de grande réalité physique, mais est souvent utilisée
en pratique. Nous y reviendrons au § 8.1.3.

b) Puits dans une nappe libre

Pour une nappe libre, nous avons vu que I'équation de la diffusivité peut s’écrire, si le substratum est
horizontal, et en supposant que la vitesse est toujours paralléle & ce substratum:

Vihr =0 en régime permanent.

En répétant le raisonnement précédent, on en déduit immédiatement que le carré de la charge sera
fonction logarithmique du rayon, pour le probléme radial. Plus exactement:

p2_opgro 9 To
o~ H =qg log g

R étant le rayon d’action défini plus haut, r, le rayon du puits, K la perméabilité, H la charge a la limite,
et h, la charge dans la nappe au rayon du puits.

Notez que la surface de I’eau dans le puits ne se raccorde pas exactement dans la réalité en h,; il existe
une certaine hauteur de surface de suintement dans le forage, due & la présence de la crépine du puits, qui
n’est pas prise en compte ici. Le profil dans la nappe est donné par:
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h2 = H? i L r
T1K "% R
Pour relier cette formule & celle de Dupuit appliquée au forage de rayon r, pour une nappe captive:
Q To
ho— H=—= -
° T ¢ R

On peut écrire pour la premiére (nappe libre):

2 g2 =9 1™
B2 = H? = (ho + H)(ho — H) = 77 Log

soit:

ho—H—————-—Q——LogE

Comk (B3H) 7R
Ces deux formules sont donc voisines, en assimilant la transmissivité moyenne dans la nappe libre 4 la

ho+ H

perméabilité K multipliée par I’épaisseur moyenne

¢) Principe des images

Considérons deux puits distincts, de centre O et O' pompant chacun Q et Q'. Nous cherchons la
valeur de la charge h en tout point du domaine. D’aprés le principe de superposition, on peut I’obtenir en
additionnant les solutions logarithmiques élémentaires de chacun de ces puits:

0 o

En M, nous pouvons écrire:

Q /
hy = — L
M= onr 8Tt onT

On identifiera la constante en fonction des conditions aux limites, si faire se peut.

Log r’ + constante

- 16F cas particulier: limite & potentiel imposé:

Supposons que dans le puits O’, on pompe un débit (—Q), c’est-a-dire en fait que 'on injecte le débit
Q; la solution s’écrit:

h

r
M = ST Log o + constante

Si nous nous intéressons aux points M ol r = r’ (c’est-a-dire la médiatrice de OO"):

hayr = constante
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Autrement présenté, la charge h est imposée et constante sur la médiatrice de OO’

Nous venons donc de découvrir une solution exacte au probléme suivant: un puits O unigue situé a une
distance d d’une limite rectiligne infinie a potentiel constant (charge imposée: h = H).

. Q r
Solution: h = oTIT Log = + H o g o
r étant la distance au forage réel O, et r' la distance au point
fictif O’ symétrique de O par rapport a la limite.
h =H
Cette solution est bien la solution unique du probléme
posé, puisqu’elle vérifie les conditions aux limites et |’équation

de diffusivité.

La seule réserve est qu’au forage O, le rayon du forage r, soit négligeable devant la distance 2d a O’
pour que la charge h, au forage O soit bien une constante tout le long de la circonférence de ce forage. Si

ce n’est pas le cas, O et O’ ne sont plus les centres des forages, mais les foyers des faisceaux de cercle, lieux
des points ou le rapport r/r' est constant.

On a I’habitude d’appeler le point fictif O’ le “forage image” du forage O, image de signe contraire, car
le débit du forage fictif image est 'opposé de celui du puits réel.

Une limite a potentiel imposé rectiligne associée & un forage se représente donc par un forage image
fictif symétrique.

Il ne faut pas perdre de vue cependant que la solution ci-dessus représente aussi le cas de deux forages
de méme débit, mais de signe opposé, dans un milieu infini.

by

- M€ a5 particulier: limite & flux nul:

Dans 'expression initiale a deux forages, O et O’, faisons maintenant Q' = Q.

_ /
hy = T Log rr’' + constante

Par symétrie, on remarque immédiatement que, sur la médiatrice de OO’:

Gh
= =0
dn
On peut d’ailleurs facilement le démontrer en passant en coordonnées cartésiennes r2 = z2 4 y2 et en
calculant —.
Oz

Nous avons donc trouvé la solution analytique du probléme d’un forage unique O situé a une distance
d d’une limite rectiligne infinie a flux nul:

Log rr'+ constante 0 d

Solution: h = ST — ... 0

' étant la distance au “forage fictif image” symétrique du for-
age O par rapport a la limite, mais image de méme signe cette

fois-ci (débit +Q). oh

Le méme commentaire s’applique & la relation entre le
rayon du forage r, vis-a-vis de d, et & la représentation de la
solution pour deux forages réels dans un milieu infini.
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- Plusieurs limites.

Par ce principe des images (un puits engendrant une “image” par rapport a une limite), on peut donc
représenter un probleme a plusieurs limites.

- Premier exemple: demi-nappe alluviale: deux limites paralléles, I'une a potentiel imposé, I’autre & flux nul
(le coteau):

-Q +Q flux nul h=H
v v
Q -Q -Q +Q
. o o) ° . ©
puits réel

Cependant, chaque puits fictif image engendre une autre image fictive (du méme signe ou de signe
contraire) par rapport a 'autre limite: on aboutit ainsi & une double série infinie d'images de plus en plus
distantes.

On se limite, dans la pratique, a quelques termes.

- Deuxiéme exemple: confluent de deux riviéres (limites & potentiel imposé):

. - 21 . . . . . ,
Si ’angle des deux limites est exactement de — (n entier), on géneére n 1mages fictives disposées en
n
cercle comme ci-dessus.

etc...On peut multiplier les exemples d’utilisation du principe des images.

d) Ligne de puits

Il est parfois utile de considérer un alignement d’une infinité de puits distants entre eux de a, et pompant
le méme débit @, dans une nappe infinie.

La solution est évidemment donnée par la superposition d’une infinité de solutions élémentaires. Mais
on peut aussi tirer partie de la symétrie de I'écoulement, car les médiatrices des segments joignant deux puits
voisins sont des lignes de courant qui délimitent ’écoulement vers chacun des puits:

Y .

4 2

4 2

! 2

4 4

Z 2

a A '4

t l % 7
- s - B T e - >
puits puits 5 '—— puits 1%

A/7/1\ b

puits 7

7

2 ! 4

Y, ‘ ?
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. - . . o a
L’écoulement est donc la juxtaposition de “modules” identiques, défini par exemple dans z € [—%, +§]

Schneebeli a montré que, dans un tel module, la solution élémentaire s’exprime par:

Ch 2 — Cos 2=
h= -2 Log e %
40T 2
. e’ +e””? . .
ou Chz = — est le cosinus hyperbolique.

Quand y devient grand devant a (en pratique, y > a), le terme Ch devient prépondérant devant le terme
Cos, et on peut écrire:

. Q Log 2
hx T YT

Ceci correspond a un écoulement uniforme de gradient:
on 8.
8y = 2aT
On peut donc assimiler la ligne de puits, dés que I’on s’éloigne, & une tranchée drainante continue en

y = 0, qui préléverait dans la nappe le méme débit que la ligne de forage, et dont la charge serait:

h(y = 0) = _QI?T Log 2

en prenant comme potentiel de référence:

h=0 pour y=0, z=a/2
dans la solution exacte compléte précédente.

Cette considération est souvent utile pour des projets de rabattements, quand on veut passer d’une ligne
de puits a une tranchée ou inversement.

On généralise facilement au cas ou la ligne de puits est paralléle & une limite, par la théorie des images.

e) Courbe caractéristique d’un forage

En régime permanent, le débit d’un forage donné peut s’exprimer en fonction du rabattement (charge
initiale moins charge en régime stabilisé) dans le forage:

H-h
Q= QH(—L——R) en nappe captive (formule de Dupuit)
Og T—.;
(ro = rayon du forage)
H? _ h2
Q=1K Q—Rl en nappe libre

On en déduit que la courbe d’évolution du débit Q en fonction du rabattement stabilisé s = H — h
devrait étre une droite en nappe captive et une parabole en nappe libre.

Dans la réalité, la “courbe caractéristique” d'un forage donnant le rabattement s en fonction de Q est
toujours d’allure parabolique:
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= Q
y?
En effet, il existe toujours au voisinage du forage des pertes de charge quadratique (terme o7 hon

négligeable) dans les premiers décimétres de terrain entourant le puits, dans le massif de gravier filtrant et
dans la crépine centrale:

-a—tube crépiné
massif de gravillon calibré

Paroi du forage —

oRREOR2 B

el

oM

(2
()

Q)

S,

xvyy]
L ‘-‘.\ﬂc

Coupe d’un forage

La courbe caractéristique du forage en rend compte. Cette courbe est surtout utile pour dimensionner
la puissance de la pompe qu’il faudra installer pour extraire un débit donné.

Dans la pratique, on admet que la forme quadratique des pertes de charge dans le massif, dans la crépine,

et méme dans le tubage du forage, permet de poser une loi de variation du rabattement stabilisé avec le
débit de la forme:

s= AQ + BQ?

On réalise donc des essais sur le forage & plusieurs paliers de débit, pendant des temps suffisants pour
que le régime soit & peu prés stabilisé (s ne varie que peu avec le temps, en pratique, quelques heures). On

trace alors s/Q en fonction de @, qui doit étre une droite de pente B et d’ordonnée a l'origine A. Walton
caractérise I’état du puits par la valeur de B:

B < 675 m/(m®/s)?
675< B < 1350 m/(m3/s)?
B > 1350 m/(m3/s)?
B > 5400 m/(m3/s)?

Bon puits, bien développé*
Médioc:re

Puits coomaté ou détérioré
Puits irrécupérable

Voir Levassor et Talbot, 1976.

* Le développement d’un puits dans un milieu alluvionnaire consiste, par alternance de pompage et d’injection
(pistonnage), & mettre les particules fines en mouvement dans la formation au voisinage du forage, pour les pomper
et les extraire. On améliore ainsi la perméabilité du sédiment prés du puits, donc les pertes de charge quadratiques.
En milieu calcaire, le développement consiste 4 injecter de ’acide (HCI) pour dissoudre la roche et ouvrir les fissures.
En milieu fissuré, on peut également tirer & I’explosif dans le forage pour augmenter localement la fissuration. En
milieu contenant des particules argileuses, on utilise des floculants (polyphosphates).
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7.4. SOLUTION ELEMENTAIRE EN COORDONNEES SPHERIQUES

Une solution ne dépendant que de la distance p a lorigine vérifie:

0 Oh
h= dp (p ap) 0

soit:
h= _2 +b
P

On montre de méme que cette solution est un écoulement convergent vers ’origine, correspondant & un
prélévement constant () dans toute sphére de rayon R centrée a I'origine. Le débit Q est:

Q = 4lla

Pour donner un exemple de calcul d’une nouvelle solution par intégration d’une solution élémentaire, en
suivant Schneebeli, on peut rechercher la solution correspondant & un prélévement a débit constant sur un
segment de droite z = £C avec une densité de prélevement constant d@Q = Ad€ sur ce segment.

La solution élémentaire pour un prélevement en un point £ du segment (+C,~C) de 'axe z est:

h= dQ
- 4H\/:cz +y 4+ (z-¢)?

d’oti en intégrant:
A 1+ C+ 22+ + (2 + O)2

/+C /\df .
= = — Lo
c M4y +(-6F M L Co/argt (o0

7.5. POTENTIEL COMPLEXE A DEUX DIMENSIONS

Sila perméabilité K (ou la transmissivité T') est constante, homogéne et isotrope, on définit le “potentiel

des vitesses” ¢ = Kh (ou Th).
La loi de Darcy et ’équation de diffusivité s’écrivent, en fonction de ¢:

U =-grad ¢
V=0
On peut alors définir une fonction conjuguée 1, dite “fonction de courant” par:
oy _ _9¢
Oz dy
o0 _ 9
8y~ Oz

Cette définition est possible car V2¢ = 0, ce qui entraine V2¢ = 0. Les conditions ci-dessus sont les

“conditions de Cauchy” de deux fonctions ¢ et ¢ définissant une “fonction analytique”.
fonction analytique de la variable complexe:

F=¢+

z=zr+1y (et non de z et y séparément - cf. conditions de Cauchy).
La fonction T est appelée le “potentiel complexe” de ’écoulement.
Pourquoi a-t-on appelé ¢ la “fonction de courant” ? Il est facile de s’en rendre compte.

Soit P et P’ deux points voisins du plan complexe:
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Calculons le flux traversant le segment PP’

Q=T .7 ds
oh 98 _ 0
Yid —AEE_ T8 T oy
avec _KQ’j o ow
by =~ Oy oz

— —dy
et ds{ dr

Alors: dQ = %—'S-dy + %ip-d:c = dy

I

Donc, entre deux points A et B, le flux traversant n'importe quelle courbe joignant A et B est:

flux = ¢(B) —¥(A4)
donc, les lignes ¢ = constante sont les équipotentielles de I’écoulement, et

les lignes ¢ = constantes sont les lignes de courant de I’écoulement d’ol le nom de “fonction de
courant” de .

- Exemple: La solution élémentaire radiale a deux dimensions s’exprime tres aisément en potentiel complexe:

z=reé?

4
I‘(:):—q—Logz:-q—Logr+iq

21 21 TR

Donc, les équipotentielles sont: ¢ = _29ﬁ Log r

On retrouve bien la méme expression que plus haut si on se souvient que le potentiel des vitesses est
é = Kh (ou Th).

L’intérét du potentiel complexe est de permettre I’emploi de nombreuses méthodes analytiques de trans-
formation.

En particulier, les transformations conformes (I'inversion, par exemple) qui conservent les angles peuvent
étre appliquées & ce type de probleme et permettre de trouver analytiquement des solutions simples a
des problémes qui, apparemment n’en avalent pas. Voir en particulier Polubarinova-Kochina pour ce type
d’approche de ’hydrogéologie mathématique.

Le principe de la démarche est le suivant: on transforme le plan complexe z,y en un plan u,v ou le
probléme d’écoulement posé a un potentiel T' connu. Par la transformation inverse, on obtient le potentiel
complexe I dans le plan (z, y) initial. La solution élémentaire du probleme 7.3.d., par exemple, a été calculée
par Schneebeli en utilisant la transformation conforme:

I'= Sin —
a

. . . a ajl .. .., . .
qui transforme le plan infini en un “module” ¢ € [—5, +—2—] limité comme on le voulait. Il suffit ensuite de

séparer parties réelles et imaginaires.
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Chapitre 8 | s

SOLUTIONS TRANSITOIRES DE L’'EQUATION DE DIFFUSIVITE
ESSAIS DE DEBITS

8.1. Solutions élémentaires en coordonnées 8.3. Drainance
radiales. 8.3.1. Intégration de I’équation de
8.1.1. Solution de Theis diffusivité en tenant compte des épontes
8.1.2. Approximation logarithmique 8.3.2. Solutions analytiques radiales du
de Jacob probléme de la drainance
8.1.3. Relation du régime transitoire 8.4. Corrections particuliéres a apporter
avec le régime permanent a un essai de débit
8.1.4. Application du principe de - 8.5. Autres solutions (a une dimension)
superposition - de I’équation de diffusivité

8.2. Interprétation d’un essai de débit 8.6. Mesures ponctuelles de perméabilité

perméabilité in situ

Nous allons rechercher quelques solutions analytiques particuliéres usuelles de Péquation de diffusivité
en régime transitoige:

. h
Vzhl—_: %%—t— 4 deux dimensions (nappe captive ou nappe libre
: selon ’hypothése de Dupuit)
5 Ss 0h « .
ou Vh = —— a trois dimensions
K ot

Remarquez que les propriétés générales de I'équation de diffusivité (unicité de la solution, linéarité,
anisotropie) donnée au § 7.1. sont valables en régime transitoire.

8.1. SOLUTIONS ELEMENTAIRES EN COORDONNEES RADIALES

En coordonnées radiales, 'équation de diffusivité s’écrit 3 deux dimensions et en supposant que la
solution n’est fonction que de la distance:
19 r@h _S0h
rdr \ Or) T ot
Posons:

T
a=z ou 5 a s’appelle la diffusivité de la nappe.
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Une solution élémentaire est la “solution de Laplace”*

1‘2 n
h:CE_tlat —2
r= z

aveen=120u3{r= Vz2+y2 (n=2)
r= JVri+y?+:z2 (n=3)

Elle correspond & une émission instantanée et ponctuelle de fluide a l'origine. Nous verrons d’autres

solutions ultérieurement.

8.1.1. Solution de Theis
Theis (1935) a proposé une solution intégrale (possible d’aprés la linéarité des équations) de cette solution

élémentaire, correspondant a une émission ponctuelle et continue de fluide a 'origine, & deux dimensions:
r’S
4

4T
¢ Tdr
7

h(r,t):/otC

ui est également solution de I’équation de diffusivité, avec conditions aux limites repoussées a l'infini et
q ,

condition initiale h =0V r.
Calculons, avec cette solution, le débit traversant un cylindre de rayon r:

23 75
8h ] te 4Tt . te 4Tt
Q(T‘,t) = - QHTT(,—?;' = —QHT'TE C‘/; ——T—'dT =1r CSA 72 dr
r’S
Q(r,t) =4lITCe 4Tt
si r—0, Q — 4llTC
Q

Si I’on assimile & zéro le rayon d’un puits, le débit échangé est donc constant a I’origine, et C = T
T

La solution obtenue est donc celle du pompage ou de l'injection & débit constant dans un puits de rayon

négligeable.
r’S
Q te—4T7‘
hir,t) = ——
(r,t) 4HT/0 r—
Si I’on pose:
4Tt
T r2S
Q /°° e’ Q 1
h(r,t) = —— Z —dr=—|-E;|—-—
(nt) = 7 e T T AT 2

* Elle s’obtient aisément par application de la transformation de Laplace, ce qui est une méthode de résolution trés

efficace pour de nombreux problémes transitoires.
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E; est la fonction exponentielle intégrale, qui est connue et tabulée.

Solution transitoire de I’équation de diffusivité

On trace dans la pratique la “courbe de Theis”, ainsi qu’on I’appelle, en fonction du paramétre u:
pratiq P p

h(r,t) =

Q
a7 ()

W (u), fonction de Theis, est généralement tracée en coordonnées logarithmiques.

Cette fonction est représentée sur la Planche 6 hors texte, en méme temps que les fonctions de Hantush.
La courbe de Theis est la courbe enveloppe des courbes de Hantush.

La table ci-dessous (Wenzel, 1942) donne W en fonction de 1/u:

1/u 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
x 1 0.219 0.049 0.013 0.0038 0.0011 0.00036 0.00012 0.000038 0.000012
x 10~! 1.82 1.22 0.91 0.70 0.56 0.45 0.37 0.31 0.26
x 102 4.04 3.35 2.96 2.68 2.47 2.30 2.15§ 2.03 1.92
x 1073 6.33 5.64 5.23 4.95 4.73 4.54 4.39 4.26 4.14
x 10—4 8.63 7.94 7.53 7.25 7.02 6.84 6.69 6.55 6.44
X 10-° 10.94 10.24 9.84 9.55 9.33 9.14 8.99 8.86 8.74
X 106 13.24 12.55 12.14 11.85 11.63 11.45 11.29 11.16 11.04
x 10~7 15.54 14.85 14.44 14.15 13.93 13.75 13.60 13.46 13.34
x 108 17.84 17.15 16.74 16.46 16.23 16.05 15.90 15.76 15.65
x 10~° 20.15 19.45 19.05 18.76 18.54 18.35 18.20 18.07 17.95
x 10710 22.45 21.76 21.35 21.06 20.84 20.66 20.50 20.37 20.25
x 10~ 24.75 24.06 23.65 23.36 23.14 22.96 22.81 22.67 22.55
x 10712 27.05 26.36 25.96 25.67 25.44 25.26 25.11 24.97 24.86
x 10713 29.36 28.66 28.26 27.97 27.75 27.56 27.41 27.28 27.16
x 10~14 31.66 30.97 30.56 30.27 30.05 29.87 29.71 29.58 29.46
x 1015 33.96 33.27 32.86 32.58 32.35 32.17 32.02 31.88 31.76

Notez que si @ > 0,h croit avec u (ou avec t). C’est donc le cas ol le débit Q est injecté. Q < 0
correspond au cas du débit pompé.

8.1.2. Approximation logarithmique de Jacob

Sit est grand, soit u grand:

ou 7y est la constante d’Euler (y = 0,577,¢” = 1,781).

1
—E',' <—;;) had Log u-—v

2

. . 4Tt ! . oy
En pratique, dés que u = —< 2 100, on peut adopter I'approximation logarithmique de la formule de
Theis, dite encore formule de Jacob:

h(r,t) =

4Tt

Q

Q
41T

2,25Tt

Log

ehSr2

41T

Log 52

Log: Népérien.
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Sur un papier semi-log, la courbe d’évolution h(t) en un point donné est une droite (cf. PLT).

Rappelons les hypothéses de base des formules de Theis et de Jacob:

- milieu infini, homogene et isotrope;

- transmissivité constante (nappe captive, ou avec approximation, nappe libre peu rabattue - S est alors
remplacé par wy, la porosité de drainage);

- probléme plan, c’est-a-dire charge constante dans la nappe sur une verticale (nappe captive ou hypothése
de Dupuit en nappe libre);

- forage captant la nappe sur toute son épaisseur* (pour que le probléme reste plan), pompant a débit
constant, avec rayon du forage négligeable;

- conditions initiales h(tzo) = 0 V r, c’est-a-dire nappe initialement immobile. Si ce n’est pas le cas,
d’aprés le principe de superposition des écoulements, le rabattement s = ho, — h vérifie les conditions
initiales si h, est un régime permanent.

Remarque: On peut calculer la variation de la charge au voisinage du puits pour ¢ grand:

Sr?
oh Q e 4Tt Q1 . .
= = ~ - t
5~ anT 1 ATT ¢ si T est petit

Oh . - . . . .
Donc, TR 0 si t — oo: la variation de charge devient trés lente au voisinage du puits. Comme de

plus, — dépend peu de r, le profil de charge se déplace parallelement a lui-méme au voisinage du puits.

ot

8.1.3. Relation avec le régime permanent

La formule de Dupuit donnant, en régime permanent, le rabattement dans un forage de rayon r, est:

R est le “rayon d’action” du puits, c’est-a-dire la zone a l'intérieur de laquelle I'influence du pompage se
manifeste. Au-dela de R, le rabattement di au forage est supposé nul.

Cette notion est souvent admise en pratique. Dans la plupart des cas, ce rayon d’action R est fictif, et
la stabilisation des rabattements et I’obtention d’un régime permanent sont dues a I'influence d’une limite

telle qu’une riviére a quelque distance, ou 4 un phénomene de drainance ou de recharge par la surface (voir
plus loin § 8.3).

Cependant, dans une nappe non réalimentée par drainance ou par une limite, on peut exprimer ce

“rayon d’action” du puits en fonction du temps de pompage, en appliquant I'approximation logarithmique
de Jacob, au forage lui-méme:

_Q 2,25Tt _ Q 1,5/Tt/S
STo = N7 198 ~5r2 = nT -8

En comparant cette expression a la formule de Dupuit, on en tire:

To

R=1,5\/Tt/S

Si la nappe est infinie et non réalimentée, R varie donc comme V1. Si t est grand, R varie trés lentement,
et il semble que 1’on obtienne un régime permanent.

De plus, 4 t donné, un profil piézométrique passant par le puits a bien une expression logarithmique
(dés que I'on peut utiliser 'approximation de Jacob, c’est-a-dire pas trop loin du puits) comme le décrit la
formule de Dupuit.

On parle alors de forage ou de puits “complet”.
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8.1.4. Application du principe de superposition

On peut, comme en régime permanent, utiliser le principe de superposition:
- soit pour calculer I'influence de plusieurs puits pompant dans une méme nappe,
- soit pour représenter artificiellement 'influence d’une limite rectiligne (principe des images),

- soit pour étudier I'arrét du pompage. limite

_____ image
/

a) Limite rectiligne étanche (flux nul)

En rabattement: pompages de méme signe au puits et puits
dans le puits-image:

L [ (4T, (4T
S‘Iﬁf[w (sr2>+w(sr'2)] M

Si 'on peut appliquer I’approximation logarithmique pour les deuz fonctions W:

S

T4nT + Log “gig

Q L 2,25Tt 2,25Tt
Sr? Sr'2

_Q 2,25Tt r?
S -—m 2 LOg 52 + Log ;','2'

Si I’on trace P’évolution du rabattement s en fonction du logarithme du temps (papier semi-log) en un

point M donné, la pente de la droite va doubler dés que ’on pourra utiliser ’approximation logarithmique

(cf. PLT).

b) Limite rectiligne de réalimentation (potentiel constant)

- Pompage de signe opposé (injection) au puits-image:

. Q 4Tt 4Tt
s—aﬁ?[w(ﬁ)‘w(mﬂ

Si I’'on peut utiliser I’approximation logarithmique pour les deuz fonctions W:

oo Q [p, 2257t 2,95T1
=T Sr? 8 52
rl
= g7 L8 7

Le rabattement se stabilise et n’évolue plus avec le temps (cf. PL.7). C’est bien souvent ainsi que
s’obtient un régime permanent.
c) Arrét de pompage

Pour calculer le comportement d’un forage que ’on arréte (“courbe de remontée”), on superpose par la
pensée, au forage lui-méme, une injection au méme débit constant.

Soit t, la durée du pompage, et t; le temps compté & partir de I’arrét du pompage, le rabattement en
tout point, a partir de I’arrét du pompage, sera donné par:

_@Q AT(t, + t1) 4Tt
= \V T TV (5

Trois cas peuvent se produire:
- il faut utiliser les fonctions W pour I'un ou les deux termes:
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- on peut utiliser 'approximation de Jacob pour les deux:

. Q 2,25T(t, + 11) 2,257t
ST T Lo Sr? Log Sr?
s Q L to+1 Q

= o = Lo 1+t°
=T " T3, Tanr % t

t
On trace alors s en fonction du logarithme de (1 + t_o)
1

- on peut supposer que la premiére fonction W est stabilisée (c’est-a-dire que le pompage a duré assez
longtemps), donc que, pendant les premiers temps de la remontée au moins, le rabattement s ne varie
que sous Deffet de la deuxiéme fonction W (ou de son approximation logarithmique). On traite ce terme
seul comme un simple pompage.

Cette méthode est connue sous le nom de “Houpeurt-Pouchan”.

8.2. INTERPRETATION D'UN ESSAI DE DEBIT

a) Méthode de Jacob

Un pompage a débit constant dans un puits permet de déterminer les paramétres T et S d’un aquifere,
d’ou I'emploi trés fréquent des “essais de débits” pour étudier un aquifere.

A partir d’un état initial aussi stabilisé que possible, on met en route un pompage a débit constant dans
un forage, et on observe les rabattements dans le forage lui-méme, et si possible dans un certain nombre
de piézométres voisins. La cadence des mesures est trés rapide initialement (toutes les minutes ou moins si
possible) et se ralentit avec le temps. On interpreétera, si possible, les mesures aux piézometres; si I’on doit
interpréter les mesures au puits de pompage, on utilisera plus volontiers les mesures de remontée a ’arrét du
pompage, qui ne donneront que T' et pas S. Mais les mesures 4 la descente en pompage peuvent étre faussées
par “I'effet de skin” lié aux pertes de charge anormales au voisinage du forage; il est possible cependant d’en
tenir compte.

Interpréter un essai de débit signifie dépouiller ces mesures, de facon graphique, pour en déduire T et

S.

La méthode de Jacob consiste & reporter sur un graphique semilo-
garithmique le rabattement s en fonction du temps, & un point donné
(puits ou piézometre).

On peut également reporter s/Q en fonction de t/7?, si le débit
du puits a un peu varié, ou si 'on veut porter tous les piézometres
sur le méme graphique.

Dés que P’approximation logarithmique devient valable, les points doivent s’aligner sur une droite: dés
que l'on a reconnu cette droite, I'interprétation est immédiate. Le probleme est que le début de la courbe
gécarte de la droite de Jacob, et la fin peut également s’en écarter si la nappe n’est pas illimitée (cf. PL7
et § 8.1.4): on hésite parfois & choisir la “bonne” droite. La méthode de Theis, que nous verrons plus loin,
permet de trancher les cas douteux.

Si donc on a choisi une droite, on prend deux points arbitraires A et B sur cette droite:

Q 15:] . Q ip
Csa= = Log -2 ¢ - B
SB~SA= T "% 1, sot T= TMsp —sn) " 1,

L’usage veut que l’on choisisse: )
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tB = lOtA

0,183
ce qui donne: T= —Q—
SB —S8A

Pour calculer S, le coefficient d’emmagasinement, il suffit de remarquer que le point fictif C d’interception
de la droite de Jacob avec ’axe s = 0 correspond a:

2,25Ttc 2,25Tt¢e
Log ——=— =0 soit —_ =1
& Sr? Sr2
. 2,25Tt
d’ou: S= ’—2--0-
r
H
£
3 0 Icharge initiale
- »
€ x ™,
- 0,1
§ 0,2 ‘x\ T
£ \~, i sznéme avec limite
0.3 \\ 7 rectiligne de réalimentation
04 \0 ° 0 ’ o . oy
05 I
, N NM
06 ™ Mg milieu infini
0.7 A
08 *.Nr

y w\
10

systdme avec limite \

11 rectiligne imperméabie \

1.2
1,3
2 3 45678910 2 3 4 5678910° Y 2 4 5678910° % 3 4 Eﬂ'8910‘
1 1 L1yl 1 1 1111l 1 1111 - 111
temps
(secondes)

P1.7 - Evolution de la charge dans un piézométre pendant un essai a débit constant

- Influence d’une limite:

Nous avons vu qu’une limite imperméable double la pente de la droite de Jacob:
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limite

| o — — 9 iMage
/

s puits

»

] logt

P R )

Si I’on interprétait P’essai de débit avec la deuxiéme droite, on trouverait donc une transmissivité moitié
(a tort).

On peut cependant préciser la distance de la limite. L’expression du rabattement est:

Q. 2951 2,25T1
s‘4nTt°g sz | 18 g

Considérons le point d’intersection 1 (fictif) des deux droites. Par définition, c’est analytiquement en
ce point que l'influence du pompage-image est nulle (méme si on n’a le droit d’appliquer ’approximation

logarithmique que bien plus tard). De la méme fagon que l'on avait calculé S en utilisant le point fictif C,
on écrit ici:

2,25Tt
Log T,—{i =0

soit: r'=4/ 2,25T4
) S

qui donne une idée de la distance de la limite. Avec deux piézométres, par une petite construction
géométrique simple, on peut méme donner sa position exacte.

On procéde exactement de méme pour une limite de réalimentation:

SRR —

logt

v [2,25T1;
- S

Notez que 'on peut aussi interpréter suivant la méthode de Jacob en portant en fonction de log r, a

une date t donnée, si ’on dispose de plusieurs piézomeétres: s = —9— Log r + constante.

20T

b) Interprétation avec la formule de Theis compléte par la méthode d’identification

On utilise la fonction compléte tabulée, valable méme pour les temps petits:
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= Q@ (i
*TaT " \5
On va utiliser un graphique logarithmique:
- pour la courbe standard (I’abaque P1.6 hors texte):

W (u) en fonction de u

- pour les mesures expérimentales s en fonction de t (ou éventuellement s/Q en fonction de ¢/r?). I faut
utiliser un papier logarithmique transparent (calque) de méme module que la courbe standard*

L’un des graphiques est tracé sur du calque pour pouvoir le poser sur 'autre. En effet:

en ordonnées: logs = log [%W] = log % +logW

En graduation logarithmique des ordonnées, s se déduit de W par une translation unique (log %)

en abscisses: Un point d’abscisse u de la courbe standard représente en fait une valeur donnée de:

4Tt

Sr2
Si u et t sont portés en graduations logarithmiques sur les abscisses, on a:
log u = log St = log + log —&
ogu=1log=— =lo 0g =
& 352 & 852
s . . , 4T
t se déduit de u par une translation unique également [ log Sz
r
En conséquence, avec du papier bilogarithmique, la courbe standard et la courbe expérimentale doivent
pouvoir étre superposées par simple translation, dans le sens des deux axes, d’une feuille de papier sur
lautre (voir P1.8), en conservant toutefois le parallélisme des axes. Ayant trouvé le point de superposition

des deux graphiques, I'identification est alors immédiate. On prend un point quelconque M du plan, pas
nécessairement sur 'une quelconque des courbes, et on exprime ses coordonnées suivant les deux systémes:

So W,
M= { et {
tO uo

Par définition on peut écrire:

r-9W
o = W, =i,
d’ol l'on tire: _ 4T,
u — 4Tt S = —3
o Sr2 T U

Cependant, I'influence d’une limite est moins aisée & interpréter dans ce systéme que dans celui de Jacob.
Son seul avantage est qu’il n’est pas nécessaire d’éliminer les premiers points de mesure et que, pour des

essais de courte durée, on a donc moins d’ambiguité que lorsque ’on recherche une droite sur le graphique
de Jacob.

L’une et 'autre méthodes peuvent donner tout au plus deux chiffres significatifs aux parameétres T et
S, jamais trois.

* Si Ion utilise Pabaque de la P1.6 comme courbe standard, le papier calque correspondant doit avoir un module
de 62,5x62,5 mm. C’est le module standard pour Vinterprétation des sondages électriques, en géophysique. Un tel
calque bilogarithmique est fabriqué en France par la Cie Frangaise des Diagrammes (blocs “précis”) sous la référence
2101.
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c) Interprétation des courbes de rzmontée

Ainsi que nous I’avons vu au § 8.1.3.c., il existe deux méthodes d’interprétation d’une courbe de remontée:
- La méthode de Houpeurt-Pouchan: on suppose que le pompage a duré assez longtemps pour que I’on
puisse - au moins au début de la remontée - penser qu’un régime permanent avait été atteint avant
I’arrét.
On interpréte alors la courbe de remontée comme une courbe de descente, par la méthode de Jacob ou
celle de Theis.
tp
t
temps compté aprés I’arrét du pompage) sur un diagramme semi-log: la pente de la droite que ’on doit

obtenir permet de calculer la transmissivité, selon la méthode de Jacob (§ 8.2.a.), mais pas le coefficient
d’emmagasinement.

- La méthode en log (1 + ): on trace s en fonction de log (1 + tTp) (tp = durée du pompage,t =

L’intérét des courbes de remontée est particuliérement grand pour les essais de débits oti I'on ne dispose
pas de piézométres, le seul point d’observation de la nappe étant le forage lui-méme.

En effet, 2 la descente, le niveau dans le forage est perturbé par les pertes de charge (termes quadratiques)
qui apparaissent & la traversée des fentes de la crépine du puits, et méme dans les premiers décimétres de
terrain entourant le puits. De la sorte, en pompage, le niveau dynamique dans le puits représente mal
la charge dans la nappe au voisinage du puits. Tandis que, pendant la remontée, tous ces phénomeénes
sont annulés, et l'on observe véritablement le niveau de la nappe dans le puits, ce qui permet une bonne
interprétation

Notons que souvent dans le puits, le niveau oscille légérement a cause des instabilités de régime de la
pompe: la mesure dans le forage au cours du pompage n’est pas précise. Notons également qu’au forage, le
rayon r du puits est mal défini: on connait bien sir celui du forage lui-méme, celui de la crépine,. .., mais le
terrain lui-méme au voisinage du forage a été remanié au cours du développement du puits. On admet qu’il
existe, au forage, un “rayon efficace” r’ du forage, & prendre en compte pour les interprétations du niveau
forage, et qui est légérement supérieur au rayon réel r du trou.

8.3. DRAINANCE

8.3.1. Intégration de I’équation de diffusivité en tenant compte des épontes
Reprenons I’équation de la diffusivité compléte (nappe captive):

6h

div (K grad h) =Sy

Considérons une nappe captive confinée par deux épontes: nous ne supposerons pas celles-ci nécessaire-
ment horizontales, ni totalement imperméables.

Nous allons chercher & intégrer sans approximations I’équation de la diffusivité suivant la direction
perpendiculaire aux épontes: nous allons devoir faire les hypothéses suivantes:

i) Les épontes sont planes et paralléles, la puissance de la nappe étant e.

ii) Une des directions principales d’anisotropie est normale aux épontes (z3 sur la figure). Nous allons
nous ramener 4 un probléme plan suivant les deux autres directions principales d’anisotropie, z, et Z3,
appartenant a la direction du plan des épontes.

iii) Nous supposons que le gradient de charge dans le plan z1, 7, n’est pas fonction de z3:
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P1.8 - Essais de débits - Identification par la méthode de Theis
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8h 9*h
dz,0x3 ~ Or,0z3

. o . Oh .
iv) Nous supposons enfin que la variation de charge dans Punité de temps, —, n’est pas fonction de z3.

Autrement dit, la charge peut varier avec z3 entre le mur et le toit de la nappe, mais a chaque instant
le gradient de charge et la variation de charge sont les mémes en tout point de la nappe sur une méme
transversale 0z3. Avec ces hypothéses, I'intégration est aisée:

(9 . Oh a . Oh a [.. oOh _°6h
[, {5;[’“371] * o [“a‘z:] +'5;;["3013]}"’3-/0 e

Pour le premier membre, on sait que (régle de Leibnitz):

b(u)

F(u,v)dv = /( ) aa—uF(u,v)dv + —g%F(u,b(u)) - —g—z-F(u,a(u))

§ W
Bu a(u)

Ici, d’apreés Phypothése i), les troisieme et quatriéme termes sont nuls. On peut écrire:

9 [ oh o [[°. ok, © 9 [ oh
.671[‘/;, I\lézdl';;]-}-&;[‘/; 1\25-1;(11‘3]*}-/0 373(]\3‘6—1;)6{1'3

1¢T membre:

. Oh Oh G .
D’apres iii), on peut sortir 320 et P des deux premiéres intégrales. On fait alors apparaitre la
T1 I2
transmissivité de la nappe:
[4 e
T —_-/ I\’ldl‘a y T :/ I\’gdl‘3
o o

La troisieme intégrale s’intégre immédiatement et donne:

. Oh . Oh
("%x—a)w - ("3555),3=0

D’aprés la loi de Darcy, on peut interpréter ceci en termes de flux: c’est le débit par unité de surface
entrant dans la nappe par le toit et le mur de la nappe respectivement: si on oriente la normale aux épontes

vers l'intérieur, ces termes sont F' = — (K 5—-) mur et toit.
n

On appelle flur de drainance ces flux échangés entre la nappe captive et ses épontes. Nous les noterons
Fy et Fy (haut et bas) et les ferons figurer au deuxiéme membre, en les supposant positifs s’ils sont entrants.

. Oh . . .
Pour ce deuxiéme membre, le — sort de l'intégrale, d’apres iv) et on retrouve le coefficient d’emmagasinement:

ot
s:foes,daes:pwge @ -ﬂ5+%)

0 6h 0 dh 8h
— (T — —— | Ta— | =S— = (F
311(131‘1)+3x2<26£2) S5; = (Pt Fo)
Si I’on donne Fj et Fj, on peut chercher a intégrer cette équation et calculer h. On obtiendra, par

exemple, une solution de la forme:

h= h(l‘],l‘g,t)

1l vient en définitive:

La solution générale en fonction de s s’écrit, d’aprés les hypothéses iii) et iv):

h = h(zy,z2,t) + f(z3)
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ol f(z3) est une fonction indépendante de z),T3ett. Autrement
dit, le profil de charge en un point en fonction de Z3 n’est pas
précisé, mais est le méme en tout point et pour toute date: il
suffit de le connaitre en un point pour le connaitre partout.

Solution transitoire de 1’équation de diffusivité

profil
de charge

On ne s’intéresse en général pas 4 ce profil et on fait ’hypothése que h varie peu avec z 3.

Notons au passage que si Fy = F} = 0, nous avons montré que P’équation de la diffusivité habituelle &

deux dimensions ne suppose pas la nappe horizontale: seulement les épontes paralléles et le forage perpen-
diculaire & celles-ci.

8.3.2. Solutions analytiques radiales du probléme de la drainance

a) Hantush suppose que la nappe captive est réalimentée i
partir d’une nappe libre sus-jacente qui percole A travers le
semi-perméable qui les sépare.

Il existe deux solutions radiales classiques, celles de Hantush et de Boulton.

-t s h2 captive

Le flux de drainance F¥, en régime permanent, est donné suivant la loi de Darcy, par le gradient de

charge entre les deux nappes s’appliquant a la traversée de la couche semi-perméable:

[ o
Fo= MM ~ hi (8.3.2.1)
avec:  K': perméabilité du semi-perméable,
e’ : épaisseur du semi-perméable,
hz :  charge dans la nappe captive,
hy :  charge dans la nappe libre,
o : signifie “régime permanent”.

Hantush s’intéresse a la réaction d’un tel systéme quand on met en route un pompage a débit constant

dans la nappe captive. Il faut alors deux hypothéses:

la charge h; dans la nappe libre ne va pas varier méme si le débit de drainance F, augmente. Ceci
est valable si la nappe libre est bien réalimentée (par la pluie par exemple), ou encore si la durée du
pompage n’est pas trop longue;

Paugmentation du débit de drainance est supposée étre instantanée et toujours donnée par la loi de
Darcy: si nous notons s le rabattement dans la nappe captive:

he —s) — RO
Fp= -K'QLTS,)—I (8.3.2.2)
Ceci néglige I’établissement d’un régime transitoire dans le semi-perméable. Soit:
I"I
Fh=F + —;,—s (8.3.2.3)
2 Fy
Si le régime permanent initial h3 vérifie I'équation V2hg = —?", le rabattement s vérifie donc I’équation
de la diffusivité suivante:

Sds K’
2 _— e—— ——

S= T3 + To (8.3.2.4)

. . Te!

On définit le “facteur de drainance de Hantush” B = 5a dont la dimension est celle d’une longueur.

K

La solution radiale de Hantush s’écrit:
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r?

Q /°° e 4B’r Q ., (4Tt r
= s = Wil —, —
S=amT Jr'S 4 =mr" \;25 ' B

Tt

Cette solution se présente sous la forme suivante, en fonction de deux parametres:

_an ¢ r
=S € B

- la courbe enveloppe est la courbe de Theis (correspondant a % négligeable);

. r ’ . . I3 oy ’ (4 - ’ ’
- pour un parametre B donné (c’est-a-dire pour une perméabilité K’ du semi-perméable donné et une

distance r du forage donné), la courbe d’évolution se stabilise avec le temps: on aboutit & un régime

permanent. Ci-joint une table de la fonction W', d’apreés Walton (1970). Elle est reportée sur I’abaque
de la P1.6 hors texte.

Ceci nous explique pourquoi I'on obtient, dans certains cas, une stabilisation d’un essai de débit qui
correspond 4 un phénomene de drainance et que I'on peut interpréter a tort comme l'obtention d’un régime
permanent grace a l'existence d’un “rayon d’action” fictif R du forage (cf. 7.3.a, formule de Dupuit).

Cette stabilisation du rabattement dans les piézomeétres voisins du forage au bout d’un certain temps, se
produit au méme instant pour tous les forages a la méme distance du puits: ceci ne serait pas le cas pour une
stabilisation due & une limite de réalimentation (riviere), les piézomeétres les plus proches du forage-image
fictif se stabilisant les premiers. Pour identifier ce type de drainance, il faut utiliser une abaque de Hantush
(PL1.6 hors-texte) et I’on procéde comme au § 8.2.b. ci-dessus, avec la courbe de Theis, mais en recherchant
quelle est la meilleure courbe de I'abaque de Hantush qui permette la superposition, ce qui donne r/B.

Neuman et Witherspoon (1969, 1972) ont montré cependant que cette solution, qui néglige 'emmaga-
sinement dans les épontes, peut parfois conduire & des erreurs importantes. Ils proposent d’autres méthodes
d’interprétation, qui tiennent compte de cet emmagasinement, et également de la variation de charge dans
P’aquifére sus-jacent.

1l faut voir que la mise en évidence d’'un phénoméne de drainance lors d’un essai de débit n’implique
rien sur le sens des échanges: la drainance peut provenir d’un aquifere sus-jacent ou sous-jacent, et peut
étre, en régime permanent, (avant le début du pompage) une alimentation ou un prélévement sur ’aquifére
étudié: le flux FY de l'expression (8.3.2.1) est algébrique, et les expressions (8.3.2.2 4 4) restent valables quel
que soit son signe.

b) Boulton fait une autre hypothése sur le flux de drainance engendré par le rabattement s: il suppose

qu’une augmentation de rabattement As a l'instant ¢ génere un flux de drainance Aq par unité de surface
qui diminue exponentiellement avec le temps:

Aq(r) = S'fe= IV As f: paramétre, [T71]

L’intégrale de ce flux entre t et l'infini est:

[e o]

q:/ S’ fe=I""Y Asdr
t

g =S'As

S’ est le coefficient d’emmagasinement de la nappe sus-jacente (ou sous-jacente) qui réalimente la nappe
captive par drainance, puisqu’un rabattement As génére un flux cumulé S’As.

Mais ce flux n’est pas instantané: la solution proposée correspond a un tarissement exponentiel en
fonction du temps de cet apport de drainance.
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L’équation de diffusivité s’obtient en calculant & chaque instant le flux de drainance Fj par convolution,
c’est-a-dire par sommation des flux élémentaires produits par les rabattements engendrés depuis le début du

pompage:
Sos S [ ds
Vis= =—+ = —fa-n 22 dr
TatT /‘, fe ot ),
Boulton donne une solution radiale de cette équation qui se présente de la fagon suivante, pour r petit:

4Tt

s:iW”(u,S',f) ou U= 53

41T

LogW"”’ 1

4 -

t logu

L’évolution du rabattement se présente initialement conformément a la solution de Theis, correspondant
au couple de paramétres (T, S). Ensuite vient un palier qui permet d’identifier éventuellement f, enfin le
rabattement se présente encore comme une nouvelle fonction de Theis, mais décalée par rapport a la premiere
d’une translation paralléle a I’axe log u (pas de translation verticale) et correspondant au jeu de parametres

(T,S +S).

Ce type de drainance est donc facile & reconnaitre et a identifier avec une courbe de Theis, et permet
de calculer S§”.

Si l'on appelle t le temps ol le palier de rabattement intercepte la deuxiéme courbe de base (figure
ci-dessus), Berkaloff a montré que:

. 0,561
T
Ce type de comportement se rencontre assez fréquemment en nappe libre, 'écoulement retardé étant
simplement di a ’égouttage du milieu non saturé quand on rabat la surface libre (voir § 6.2.a).

8.4. CORRECTIONS PARTICULIERES A APPORTER A UN ESSAI DE DEBIT

L’interprétation des essais de débit, trés utile en hydrogéologie car c’est I'un des moyens les plus utilisés
pour mesurer “in situ” la valeur des parameétres T et S, constitue une science en soi. Il existe des ouvrages
entiers qui lui sont consacrés: cf. “Interprétation et discussion des pompages d’essais”, G.P. Kruseman et
N.A. Ridder, Bulletin n®11/F - International Institute for Land Reclamation and Improvement, Wageningen,
Pays-Bas, 1970.

Nous donnons ci-dessous des exemples particulierement importants:

a) Effet de capacité du puits

Au début du pompage, si le débit de la pompe est @, le débit retiré a la formation n’est pas @, car on

commence & vider le puits. Papadopoulos et Cooper (1976) ont donné la solution suivante & ce probléeme, en
nappe captive:
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Q
sp = mF(up,a)

(s = rabattement au puits
= b
Y = T
r, = rayon du puits au niveau du captage
vec F(up,a) = 32a? /°° 1—e=F/u a = ”}:
* P I B2A(B) ‘ re = rz;yon du puits au niveau du tubage
Q@ = débit du puits
S = coefficient d’emmagasinement
\ T = transmissivité

A(B) = [Bo(B) = 2aJ1(B))* + [BY,(B) — 2aY1(B))?

Jn = fonction de Bessel de 1° ordre n

Y, = fonction de Bessel de 2° ordre n

La différence entre rp et r. est explicitée dans le schéma suivant:

Cette solution est particulierement utile pour des essais de débits dans des puits artisanaux de gros
diametres, tres fréquents dans les pays en voie de développement. La fonction F(up,a) est donnée par la
table et I’abaque suivantes, extraites de Papadopoulos et Cooper. Notez que ’axe des abscisses est gradué

1 . . o .
en up, non en —. Notez enfin que I'expression du rabattement dans un piézometre a quelque distance du
u

P
puits a été donnée par Carslaw et Jaeger.

b) Essais artésiens

Dans un forage artésien, quand on ouvre la téte du puits, le débit jaillit naturellement et décroit avec le
temps. Au lieu d’imposer un débit constant, on impose un rabattement constant (h = z & la téte du puits).
Jacob et Lohman (1952) ont donné I’expression du débit jaillissant en fonction du temps:

Q =2IT(h, — h)G(e)
ou Q est le débit jaillissant,
T la transmissivité,

ho — h est le rabattement imposé (charge dans la nappe avant 1’essai moins charge imposée a
Pouverture par la cote de la téte du forage); si le forage est trés profond, il faut tenir
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Table des valeurs de la fonction F(up,a)

10° 10% 107 10% 108

10% 103 1072

10! 1 10

“ 10! 10~2 1073 1074 10-5
9.755x10-3 | 9.976x10~% | 9.998x10~% | 1.000x107° | 1.000x1078
9.192x10~2 | 9.914x10~3 | 9.991x107* 1.000x10™* 1.000x 105

5x10~! 1.768x107! 1.974x 1072 1.997x1073 2.000 2.000
4.062 4.890 4.989 4.999 5.000
7.336 9.665 9.966 9.997 1.000x10™4

5x10~2 1.260x10° 1.896x107! 1.989%x1072 1.999x1073 2.000
2.303 4.529 4.949 4.995 5.000
3.276 8.520 9.834 9.984 1.000x10~3

5x10~3 4.255 1.540x10° 1.945x107} 1.994x1072 2.000
5.420 3.043 4.725 4.972 4.998
6.212 4.545 9.069 9.901 9.992
6.960 6.031 1.688x10° 1.965x107! 1.997x1072
7.886 7.557 3.523 4.814 4,982
8.572 8.443 5.526 9.340 9.932
9.318 9.229 7.631 1.768x10° 1.975x 107!
1.024x 10} 1.020x10! 9.676 3.828 4.861
1.093 1.087 1.068x 10! 6.245 9.493
1.163 1.162 1.150 8.991 1.817x10°
1.255 1.254 1.249 1.174x10? 4.033
1.324 1.324 1.321 1.291 6.779
1.393 1.393 1.392 1.378 1.023x 10
1.485 1.485 1.484 1.479 1.371
1.554 1.554 1.554 1.551 1.513
1.623 1.623 1.623 1.622 1.605
1.705 1.705 1.705 1.714 1.708
1.784 1.784 1.784 1.784 1.781
1.854 1.854 1.854 1.854 1.851
1.945 1.945 1.945 1.945 1.940
20.15 2.015 2.015 2.015 2.015

F(uwa)102"— e
10! - Solution de Theis
Q\\ AN
107! Q«\\ 0, \\
F (up, @) &\
102 Q'Q\> o \
Q2 O.g

1073 09

\
1074 - up
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compte des pertes de charge dans le tubage, car la charge h qui nous intéresse est celle
au droit de la formation.

Tt
Q= ~—5
2
r2S
ou S est le coefficient d’emmagasinement,

rp est le rayon du forage.

G(a)= %.i /000 xe""a{%— + Arctg [Yo(:c)/Jo(:c)]}d;c

J,Y fonctions de Bessel d’ordre zéro et de 16T€ et 2€™€ espéce, respectivement.

La table de fonction G et ’abaque correspondante sont extraites de Jacob et Lohman.

a 1074 1073 1072 107! 1 10 10? 103

1 56.9 18.34 6.13 2.249 0.985 0.534 0.346 0.251
2 40.4 13.11 4.47 1.716 0.803 0.461 0.311 0.232
3 33.1 10.79 3.74 1.477 0.719 0.427 0.294 0.222
4 28.7 9.41 3.30 1.333 0.667 0.405 0.283 0.215
5 25.7 8.47 3.00 1.234 0.630 0.389 0.274 0.210
6 23.5 7.77 2.78 1.160 0.602 0.377 0.268 0.206
7 21.8 7.23 2.60 1.103 0.580 0.367 0.263 0.203
8 20.4 6.79 2.46 1.057 0.562 0.359 0.258 0.200
9 19.3 6.43 2.35 1.018 0.547 0.352 0.254 0.198
10 18.3 6.13 2.25 0.985 0.534 0.346 0.251 0.196
a 104 10° 10° 107 103 10° 1010 10!t

1 0.1964 0.1608 0.1360 0.1177 0.1037 0.0927 0.0838 0.0764
2 0.1841 0.1524 0.1299 0.1131 0.1002 0.0899 0.0814 0.0744
3 0.1777 0.1479 0.1266 0.1106 0.0982 0.0883 0.0801 0.0733
4 0.1733 0.1449 0.1244 0.1089 0.0968 0.0872 0.0792 0.0726
5 0.1701 0.1426 0.1227 0.1076 0.0958 0.0864 0.0785 0.0720
6 0.1675 0.1408 0.1213 0.1066 0.0950 0.0857 0.0779 0.0716
7 0.1654 0.1393 0.1202 0.1057 0.0943 0.0851 0.0774 0.0712
8 0.1636 0.1380 0.1192 0.1049 0.0937 0.0846 0.0770 0.0709
9 0.1621 0.1369 0.1184 0.1043 0.0932 0.0842 0.0767 0.0706
10 0.1608 0.1360 0.1177 0.1037 0.0927 0.0838 0.0764 0.0704
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c¢) Nappe libre, aquifere anisotrope, puits incomplets, tenant compte du retard dans le drainage
gravitaire de la zone non saturée.

Neuman (1972, 1973, 1974, 1975) a étudié ce probléme. Rappelons qu’un puits incomplet signifie

que le fond du puits n’atteint pas le substratum de la nappe. L’anisotropie s ‘entend pour la perméabilité
verticale/horizontale.

Si le puits est complet et crépiné sur toute sa hauteur, le rabattement dans un piézometre crépiné
également sur toute sa hauteur est donné par:

s(r,t) = 4§T oo4yJo (yﬂW) [uo(y)+§un(y)} dy

{1 — exp[-t,8(y? — 72)]} tanh (70)
B+ +o)2 =@ =)}
{
{

avec uo(y)

1 —exp[—t,8(y* + v2)]} tan (75)

2 v —(14+0)72 - (¥2+72)%} 7m

1l

ol: 7, et 7, sont les racines de:

a7, Sin A(y,) — (y* = 72) Cos h(7,) =0, 72 < y?
a¥a Sin (yn) + (y* +73) Cos (ya) =0
avec (2n = 1)(I1/2) < vn < nll n>1
avec r = distance du piézometre au puits,
@ = débit du puits, constant
T = transmissivité .
J, = fonction de Bessel de 1°7€ espéce d’ordre zéro
tsz L‘g temps réduit “élastique”
S = coefficient d’emmagasinement de la formation. En effet, la transmission des pressions dans

I'aquifére se fait par son élasticité, comme en nappe captive, jusqu’a la surface libre ou entre
en jeu le drainage. D’ol la notion de drainage retardé.
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TE

t, = 5 temps réduit “drainage”
wqr
wqg = porosité de drainage de la formation
.= S
- wq - i
= K, r?
T K, e?

K,,K, perméabilité anisotrope dans les directions z et r
e = épaisseur initiale saturée de I’aquifére.

Cette fonction est tabulée, et représentée sur 'abaque ci-dessus (Neuman, 1975). Les courbes sont
représentées pour ¢ proche de zéro; on obtient ainsi deux familles de courbes (type A et type B), qui se
raccordent par un palier. La longueur de ce palier est directement fonction de la valeur de o. Pour éviter
d’introduire ce parametre dans les abaques, on représente les courbes A en fonction du temps réduit ¢,
(échelle supérieure) et les B en fonction de t, (échelle inférieure).

L’interprétation se conduit, en bilog, de la fagon suivante:
i) on cale la fin de I’essai sur les courbes de type B par la méme méthode que pour la courbe de Theis; on
en déduit 8, T et wg;
i) on cale ensuite le débit de I’essai, sans translation verticale des courbes, de fagon & garder les mémes T
et 3; on calcule alors S sur les courbes de type A;
i) a partir de T, on calcule K, = T'/e, et grace 4 3, on peut calculer K,. C’est ainsi une des rares méthodes
qui permettent d’estimer 1’anisotropie de la formation.

La solution ci-dessus est cependant une solution approchée obtenue par linéarisation. Elle ne tient par
exemple pas compte de la diminution de ’épaisseur mouillée avec le temps. Elle peut également étre calculée
pour tout piézomeétre ouvert a une cote z donnée, et non ouvert sur toute sa hauteur.

anT =
=
Q  10° 10! 102 103 10% 108 sr?

Sp =

Theis pour ts B=r K,/ (Kee?)

Theis pour ty

10° 1073 102 10! 10° 10! =
\4 wdrz

Pour le cas de la pénétration partielle, une autre fonction est proposée. Cependant, le nombre de parametres
devient trop élevé pour pouvoir construire des abaques: un programme de calcul de ’abaque correspondant
a une géométrie donnée (profondeur du puits, épaisseur de la nappe, position et ouverture des piézomeétres)
est disponible auprés de P'auteur (Prof. Neuman, Dept of Hydrology, the Univ. of Arizona, Tucson, AZ
85721 USA) ou a I’Ecole des Mines, Fontainebleau. Le temps de calcul de 1’abaque peut cependant étre

parfois élevé.

d) Variation du débit au cours de I’essai

Toutes les solutions présentées sont linéaires en Q. Si le débit varie au cours du temps, la réponse
s’obtient par application du principe de superposition, par convolution de la solution élémentaire avec la
variation de débit. Par exemple, pour la solution de Theis:



'fl "L -—

7—0TXTS T7—OITXSI'Z7OFXET €7 OTX8L’ ¥7-OTX6L" L —OLXE0 T {—OIXTb'T 1—0TXE0° T |~

OTXLY'E |—OTX¥6 € {—0TXL0" G [—~0FX96"9 OIX80'T OIXSS'1 OIXI6'T OIX0S°T (OIXIP € PIXO0E'P 001 X29°S

(OIXS €

OIXZI'S | OIXT
R OTX65°S | O1XT
PIX0E'Y OIXFS'S| 0TX9
OIX9H'E POIX6Z'b OIXOV'S| OIXS'E
OTXSH'E PIXGT'F OIXIT'S | OIXT
OTX0S'T OIXEV'E PIXTL'H OIXLL'Y | OIXE
v 2dAy ap 8qIno) OIXVE T OIX6P'T OIXLE'E PIXE6'E OIXTH'V | OIX9
OIXE6'T OIX8Y'ZT (OIXEL'E PIXGI'E OIXI0'D | (OIXS'E
OTXSS' T (OIXZ6'T OIXTH'T (OIX00'E OIXO0E'E (OIX9S'E) 0IXT
QOIXS0°'T OIXES'T OIXSB' T (OIXTT'T (OIXIF'Z OIX08'T (OIXL6'T OTXT
(LOTX96°9 OIXL0'T (OIXLV'T (OIXEL'D (OIX66°T 0IXLZ'Z QOIXIV'T OIXTS'T| PIX9
[~OTX¥6"€ (—OTXL0°S—0TX06'9 OIXE0'T OIXVE'T OIXIS'T OIXOL'T OIX88 T OIXLE'T (OIXSO'ZT| PIXS'E
(—OTXTH" T {—0TXE0 T (—OTX LT € ;—0IX 16 € (—OTXL6 ¥ (~OTX63°9(-OIX81'6 QOIXTL'T OIXET T (OIXSE'T OIX9b'T POIXTGT (OIXLS'T| OIXT
7-0IXST'Z Toﬁxm\..vuuoﬂxﬂ.bTSxmo.aToﬁxoe.ﬁToﬁxmm.ﬂToﬁxS.mTSxow.mToﬁxwm.«TSx?.mTSxS.wTo«xmm.\.To«xmw.mToﬁxmo.mTSxmw.mToﬁxum.m OIXZO' 1|  POIXE
TSxS.«TSxS.nTan«.nanoﬁxs..v?oﬂxssToﬂxs.ruo;mm.ﬁToﬁx%.:L:xwm.uTocam.uTSxQ.mToﬂxno.fnoﬂxmw.fxo;@.mToﬂxo\..mToc:o.cTanm.mTSx?.wToﬁx%.o 1-0TX9
Nuoﬁxs.auloﬁxo“.NTSxS.mTo«xmv.«.Toﬁxﬁ.w?oﬁxwfnToc:.o.«T9x8.:|2x24Tocsa.ﬂToﬁxt.uTSx$.~To§Q..~To:z.o.mToﬂxﬁ.nToﬁxﬂm.mTSxm«.mToﬁxmm.mToﬁxwm.m [—OIXS'€
Toaxﬂm.:noﬁxi..:L:xvm.«To«xt.m?oﬁxmm.v?oﬁx:.mToﬂxmo.wToﬁxmﬂ.\.Toﬂxm_‘.wToﬁxmﬁﬁuoﬂx@.mTocao.:-SxmﬁﬁTSxR.ﬂToczn.ﬁTwamATSxo«.ﬁTquv.nToﬁxmfﬂ 1~0TX2
?oﬂxon.m?o“x%.w?oﬁxﬁ.h?oﬁxnn.m?o“xﬂ.:noﬂxm«.fuoﬂxwm.:noﬂxmm.:loﬁxoh.ﬁ?oﬂxﬁ.:xoﬂxwm.ﬂ?oﬂxmm.Suoﬁxﬁ.uToﬂxE.NToﬁxon.uTocam.NTSx:‘.NTSxQ.NToﬂxww.« [—OTXT
3

oL=¢ 09=¢g 0s=¢ ov=g 0€=g sz=¢g oT=¢

ci=¢ ol=g 8o0=¢g 90=¢ vo=g TO=¢g VOo=¢g 00=¢ €0°0=¢ 100=¢ 000 =¢ 1000 = ¢

weuma)] 9p 2aqn addew,, uonouoy el op SqYL




OIXTH'S OIXZH'S OIXTH'S POIXTH'S OIXZH'S POIXTY'S OIXTH'S OIXTH'S OIXTP'S OIXTH'S (OIXTH'S OIXZH'S POIXTH'S (OIXZb'S OIXTH'S (OIXZF'S OIXIP'S OIXES'S OIX91'9| LOIXI
OIXTIE' T PIXTE'V OIXTE'V PIXI6'D OIXIE'Y OIXIE'D OIXIE'V OIXIE'D OIXIE'Y OIXIE'V OIXIE'd OIXI6'V POIXI6'b OIXIE'Y QOIXT6'b OIXTE6'Y (OIX00'S (OIXET'S OIX66'S| (0IX9
OIXIE' b PIXLE'Y OIXIEY PIXIE'D OIXIED OIXLE'D OIXIED OIXLE'D OIXLEY OIXLE'D OIXIE'F (OIXLE'D QOIXLE'V OIXSE'B OIXBE'V OIXOb b OIX8S'V LOIXVE'V (OIXS8'S | (OIXS’
OIXZG'E PIXIB'E OIXIB'E PIXZF'E OIXIB'E OIXIF'E OIXLE'E (OIXIB'E OIXLB'E (OIXIB'E OIXZB'E (OIXZB'E OIXIB'E (OIXEY'E OIXSE'E (OIXZE'E OIXTT'¥ PIXIL'Y (OIX9L'S| OIXT
OIXFL'E OIXPUE OIXVPE'E OIXPI'E QOIXPI'E OIXPI'E OIXPI'E (OIXVI'E OIXPI'E OIXBI'E (OIXVI'E OIXVPI'E PIXST'E OIXBI'E POIXVT € (OIXOF'E OIX06'E PIXLS'V QOIXOL'S| OIXI
OIXVI'T PIXVI'T OIXYIT PIXVI'T OIXPI'T OIXPI'T OIXVI'T (OIXSI'T OIXS9'T (OIXSI'T (OIXSS'T (OIX99'Z OIXBI'T OIXSL'Z OIXI'Z OIXII'E OIXVL'E QOIXPH'b OIXL9'S| OIX9
OIXPL'T OIXPI'T OIXPL'T PIXPI'T OIXBI'Z OIXPI'T QOIXPI'T QOIXVI'T OIXPI'ZT (OIXST'Z (OIXSE'T (OIXLT'T (OIXET'T (OIXLE'Z (OIXSS'T (OIX88'Z OIXEI'E (OIXBE'L OIXSY'§| OIXS
OIXED T OIXED T OIXEI T OIXES' T OIXED T OIXED' T (OIXED' T OIXVO T OIXSY' T OIX99'T (OIXBI'T OIXZL'T (OIXS8 T (OIXL0°T OIXIE'ZT (OIXEL'T OIXIS'E POIXSE'D OIXHI'S| POIXT
OIXS0 T OIXSO' T OIX90'T OIXI0'T OIXL0 T OIXL0'T OIX80'T OIXOL'T OIXEL'T (OIX9I'T (OIXOZ'T (OIX6Z'T OIX0S'T OIXE8 T OIXEL'Z OIXZY'T (OIXIS'E€ PIXZIED OIXEY'S| OIXT
{—OTX66°9[_0TXE0" L[ —OTX60" L {—OFX8T" L _OLXEE L [_OTXSk L_OIXEY" L;_OIXZ6 L—OIX0S 8 -0TX68 8[_OIXVS 6 (OIXL0'T OITXSE'T (OIXEL'T OIXY0'T OIXLS'Z (OIX6¥'E PIXIE'V (OIXEY G| (—OIX9
[=OTXTT b{—OTX61 ¥ [—OTXOE b {—OTXSH ¥ —OTXOL b [—OIX68" b —OTXLY'S [—OFXZ9'S —OTXZH 9 —OTXL6"9{—0TX08 L-0IXZZ'6 OIXVT T (OITXIS T OIXTI0°T OIXBS T (OIXLP'E OIXIE'L GOIXEI'G | {—OIXS"
[—O1X0Z T [—OIXTE T (—OTXSH T [—OTXI9" T {—OFX86°T (—OTXEL € —OTX LS € {~OFXOT ¥ —OTX90'§ —OFTXIL G [-OTXL9'9[—0IX6Z'8 PIXBL'T (OIXIF T OIXB6 T OIXZIS'T (OIX9Y'E PIXOE'¥ OITXZ9'S | (—0IXT
[—OTXZ0 T {—OTXEL T [_OTXST T {_OIX6b T {_OIX¥8 I _0TXO01 T _OIX8Y T [_OLXL0 €[—OTXZL b [_OTXEB b OIX68 S [—OIXEY L PIXEL'T (OIX8S'T OIX96'T OIXIS'T 1—OTXT
Z=OTXPI 9, _OIXPT L7 OTXES 8[—0TX90" T [_OTXOb T [_OTX99' T [_0TXS0'Z_OTXS9 T {_OTXUL € —OTXLY b [—OIXLS S [~OIXLE L OIXTIE'T OIXLS'T OIXS6'T 0IX0S'Z 2-01X9
7—O1X86°€7—0TX98" ¥7—O0TXZI ' 9;—01X90 8 [—OIXET T {_OITX6E T ;—OTXBL T {_OTX6E T [~0TXO0S € —0IXST ¥ —OTXLE §1-0IXOL L OIXOL'T (OIX9S'T OIXE6'T 7—0IXS"
¢~OTX¥8°T;-01XZ9 €7 0TX8L b, 0IX19°9, 0T X086 |_OTXbT T {_OIXZ9' T [_OIXHT T _OIXLE € ~OIXTT ¥ _OTXPZ G {-OIXOT L OIX60'T OIX95'T 7—0IXZ
7—OEXST"Z,_0TX98'T ;—OIXE6 €, 0TXBY' G, OTX6L 8 (_OTXEL 1 {_OIXTS T [_OITXET T (—OTXLL € [_OIXE0 b ;_OFXIL G [_OTXE0 L z—OIXT
7—OTX68" T 7_0TX LS Z7—OIXT9 €7 0T XZE S 7z—OLXGE 8 {~OTX60 T |—OTXLY T {_0IX60 T [—OIXEL € (—0IX66 € [—OTXTL §[-OTX00 £ ¢—0IX9
¢—OTXEL T, _OIX6E T 70X T €;_0IX60 Sz OFXbT 8 _OIXL0 T [_OIXSH T {_OIXL0 T [_OFXIZ € _OLXL6 € _OIXOL G {_OIX86"9 ¢—OIXS"
=0T X¥9" T ;_OIXB8T T 7_0TX6Z €;—0IX96 ¥, OTX66'L_OLXSO T ;_OTXEY T {_O0IXS0 T _OIX6T € _0TX96 E_0IX60"S(-0FXL6"9 ¢ ad4y ap aqno) £—0IXT
Z—~OIX8S 17-0TX1Z T 7—0TXTZ €,—0IX88 b ;0T X68" L1 OTXVO" T [—OTXTh T [—OIX¥0 T (—_OFX8T € [_0IXS6 € (-0IX80' G [-0IXL6'9 e—OIXT
z—O1X95 T;_0TX61 Z7—OIX8T €7 OIX¥8 b7-0IXS8" L -0IXbO" T 4—0TX9
2~OTX¥S T, OTXLE T7—0TX9T €, 0TXT18 b, OVXES L —OTXEO" T y—OIXS*
2~OTXES" T7_0TX9T T7—OIXST £, 0TX08 ¥7—0TX18" L y—0IXZ
¢—OTXES" 17-0TXS1 Tz 0IXbT €7-0VX6L ¥z—OTXO08" L {—OLXE0" 1 (—OTXTh T 0¥ X}0Z (—OF X8 € —OIXS6 € [-OTXBO" S [~OIXL6'9 OIX60'L (OIXIS'T OIXP6 T (0IXO0S'T OIXIY'E OIXOE'¥ (OIXTI'S | ,—OIXT
2o0=¢g 10=¢ 900=¢ €00=¢g 100=¢g1000=¢ 1000=¢ i

oL=¢g 09=¢g 0§=

g Oov=g Oc=g ST=g 0=

g s1=¢g o01=¢g 80=¢ 90=¢g ¥vO=

¢

(99ms) weumo)] op aaqr addeu,, uorpoUOY B[ Op S[Y],




Essais de débits 143

1 4Tt tro 4T,
o= g oo (55) + [ (5), 7 [F52] )

Inversement, par déconvolution, on peut calculer la réponse indicielle du systéme, c’est-a-dire le rabat-

tement s(1) que l'on aurait observé si le débit Q avait été maintenu constant. C’est celui que I'on utilisera
pour l'interprétation.

Notez qu'il existe maintenant de nombreux programmes d’interprétation automatique d’essais de débit,
sur ordinateur ou sur calculatrices programmables.

8.5. AUTRES SOLUTIONS (A UNE DIMENSION) DE L’EQUATION DE DIFFUSIVITE

Il existe de nombreuses solutions analytiques de I’équation de la diffusivité: les meilleurs ouvrages de

référence sont encore ceux de thermique, en particulier “Conduction of heat in solids” par Carslaw et Jeager,
Oxford University Press. Toutes les symétries possibles sont envisagées.

Nous donnerons seulement deux solutions analytiques pour un écoulement & une dimension, qui sont

particuliérement utiles pour l'interprétation des variations naturelles des niveaux piézométriques dans les
nappes.

a) Massif semi-infini, variation brusque de charge

. 9%h S bh
Equation: 2= Tar , zett>0
h(z,0) = h, , Vz > 0 (initiales)
Conditions:
h(o,t) = 0 , t > 0 (alalimite)

. [ S
Solution: h(z,t) = h, erf (z Zﬁ)

ou erf(u) est la “fonction d’erreur”, connue et tabulée

erf(u) = -\72_1—1-/ e dv

Cette solution correspond au cas d’une nappe captive semi-infinie, initialement en équilibre a la charge
h, avec une riviére qui la limite. Au temps t = 0, le niveau de la riviére tombe brusquement a la cote 0:

‘/

charge h =0 charge initiale hg

s

Elle correspond également au cas du tarissement d’une nappe, initialement en équilibre avec sa riviere,
et qui regoit a l'instant zéro une recharge brusque h, sur toute son étendue alors que le niveau dans la
riviere reste constant (infiltration brusque). Une remontée h, brusque du niveau de la riviere, initialement
en équilibre & la cote 0 avec la nappe, entraine une variation de charge:
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h(z,1) = h, [1 — erf (:Jg)] = h, erfc (I\/}%)

erfc = l-erf étant la fonction d’erreur complémentaire.

En pratique, on raisonnera toujours en variations de niveau de la nappe ou de la riviére par rapport a
un état permanent.

Par convolution, on peut également calculer la réaction dans une nappe a des variations continues du
niveau de la riviere.

Ci-joint I’abaque (courbe I) ainsi qu’une table de la fonction erf, extraites de Carslaw et Jaeger. La
courbe II sur cette abaque donne la dérivée de h en fonction du temps ou de I’espace:

_WIoh _zVloh _ [S a8
h, 0L 2h, 8z “VaTi®

1.0 [

08 /

, courbe 1] /

erf (u), courbe |

u2
ue'Y

04 038 1.2 1.6 20
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u erf u erfc u u erf u erfc u
0 0 1.0 1.0 0.842701 0.157299
0.05 0.056372 0.943628 1.1 0.880205 0.119795
0.1 0.112463 0.887537 1.2 0.910314 0.089686
0.15 0.167996 0.832004 1.3 0.934008 0.065992
0.2 0.222703 0.777297 1.4 0.952285 0.047715
0.25 0.276326 0.723674 1.5 0.966105 0.033895
0.3 0.328627 0.671373 1.6 0.976348 0.023652
0.35 0.379382 0.620618 1.7 0.983790 0.016210
0.4 0.428392 0.571608 1.8 0.989091 0.010909
0.45 0.475482 0.524518 1.9 0.992790 0.007210
0.5 0.520500 0.479500 2.0 0.995322 0.004678
0.55 0.563323 0.436677 2.1 0.997021 0.002979
0.6 0.603856 0.396144 2.2 0.998137 0.001863
0.65 0.642029 0.357971 2.3 0.998857 0.001143
0.7 0.677801 0.322199 2.4 0.999311 0.000689
0.75 0.711156 0.288844 2.5 0.999593 0.000407
0.8 0.742101 0.257899 2.6 0.999764 0.000236
0.85 0.770668 0.229332 2.7 0.999866 0.000134
0.9 0.796908 0.203092 2.8 0.999925 0.000075
0.95 0.820891 0.179109 2.9 0.999959 0.000041
3.0 0.999978 0.000022
b) Massif limité, variation brusque de charge
2
Equation: %:;%,OSzgf,tZO
h(z,0) =h, , 0<z < (initiale)
Conditions: h(o,)=0 , t>0 (1ére limite & potentiel imposé)
(&) _,=0 , t>0  (2°™° limite a flux nul)

- 3 N qyn 0,5(2n+ 1)f + = /_s_ @Qn+ 1) -z [S
Solution: h_ho{l ';( 1) [erfc ( 3 Tt)+ erfc [——————-———-—2 I

avec erfc (u) = 1-erf (u) fonction d’erreur complémentaire

4 (=) (2n + 1)21%Tt (2n + DIz
Oou encore: = ﬁ Xz: 2 n 1) [— 4S£2 COSs 2£

Cette solution correspond au méme schéma qu’au cas a), mais avec une nappe arrétée par une limite a
flux nul & la distance z = £.

Ad/d:co = mmilin /,;mwxm%wc Mﬁz o 77 =o Souwra
& Ama oOMaM\m asc Lomife C”wv\gx /umpofee Uf—h dﬂjmbg—?eh‘

ue.—-‘PwS:mwj @ D= O
B gl J o ae -\ [2

Cotte tolutvom 2ok yhile Powr  Ums maffe coticre (onme )
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C-joint ’'abaque correspondante, extraite de Carslaw et Jaeger, les courbes étant indicées sur le paramétre
Tt

se

0
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ho 02 fo8
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6 /
06 153
08
1008 .0. 06"
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8.6. MESURES PONCTUELLES DE PERMEABILITE IN SITU

Les essais de débit décrits aux § 8.2 et 8.4 fournissent les meilleures estimations des perméabilités
moyennes d’un milieu. Ils sont cependant assez lourds & mettre en geuvre, aussi a-t-on proposé des méthodes

plus rudimentaires et plus locales pour estimer les perméabilités. Nous en décrivons succinctement trois, qui
sont surtout employées en génie civil.

a) Essais de poche, ou essais Lefranc

Un sondage de diamétre D est ouvert (crépiné) sur une “poche” d’une longueur £ face au terrain a tester.
Ceci est obtenu soit en tubant le reste du forage, soit en isolant la poche au moyen d’un packer gonflable
(chemise en caoutchouc qui se colle au terrain).

L’essai consiste & injecter (ou pomper) un débit permanent @ constant et & attendre que la charge (ou
la pression) se stabilise (régime pseudo-permanent: on n’attend que quelques minutes). La perméabilité est
donnée par la relation (Schneebeli, 1966):

._aQ
K==
D Ah
est la variation de charge par rapport & I’état initial,
est le diamétre de la poche,
est le débit injecté ou soutiré,
est un coefficient sans dimension dépendant de la forme de la poche:

ou

QObE-
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1

91\/Z/D + 1/4

/ )
- poche de forme ellipsoide: a= Log (¢/D ;HL’/(;/D) +1)

- poche plus ou moins sphérique: a =

- poche trés allongée (¢/D >4): a= ESQEIT(:;_I/)D—)

£ est la hauteur de la poche, et il s’agit du Log Népérien. Lorsque la poche est voisine d’une limite (surface
libre ou substratum), effet de limite crée une image dont on tient compte par un coefficient multiplicateur

pour a égal a g-—/l-)-, z étant la distance du centre de la poche a la limite, supposée grande devant £ et D.
Tz
On effectue ’essai avec différents débits pour vérifier la linéarité de la relation @ —Ah, toute non-linéarité
pouvant indiquer une fuite du tubage ou du packer, ou un claquage du terrain.

b) Essais Lugeon en roches fissurées

1l s’agit d’un essai empirique trés classique en sondage dans les roches fissurées. On isole par packers
une longueur de trou de 5 m en général. Bien souvent, I'essai se fait & ’avancement, c’est-a-dire que chaque
fois que ’on a foré 5 m, on isole avec un seul packer les 5 derniers metres du trou. On injecte alors de
I’eau sous pression en mesurant le débit stabilisé (on attend 5 & 10 minutes) en fonction de la pression. Le
protocole de mesure prévoit de faire varier la pression graduellement entre 0 et 10 bars, puis inversement en
réduisant la pression de 10 bars a 0. On trace alors le diagramme débit en litre/minute-pression:

Q

0! J » p
10 bars

Le débit & pression décroissante est généralement supérieur a celui & pression croissante. Ceci améne

d’ailleurs des informations sur le comportement des roches fissurées (débourrage des fissures, claquage du
terrain, etc...).

On définit la perméabilité du terrain d’aprés cet essai en “unité Lugeon”: c’est le débit injecté en litres
par minutes, sous 10 bars de pression et par métre linéaire de sondage, pour une durée d’essai a pression
constante de 10 minutes.

On admet que si la perméabilité en unités Lugeon est petite (quelques unités & quelques dizaines), une
unité Lugeon est trés approzimativement égale a 1 ou 2.10~7 m/s (Cambefort, 1966).

c) Essais par chocs hydrauliques

Alors que les essais précédents sont en principe interprétés en régime stabilisé, les essais par chocs
hydrauliques (slug tests en anglais) consistent 4 engendrer une impulsion de pression trés bréve en un point
d’une nappe, et & observer la réponse transitoire au méme point. L’interprétation varie en fonction de la
forme de la cavité ol a lieu 'impulsion (symétrie cylindrique ou sphérique). On en tire essentiellement la
transmissivité (ou la perméabilité) et, avec moins de précision, le coefficient d’emmagasinement.

En symétrie cylindrique, on peut interpréter un essai de choc hydraulique dans un forage ou piézometre
complet, c’est-a-dire traversant et captant la totalité de 1’épaisseur de la nappe. Soit T la transmissivité,



148 Solution transitoire de I’équation de diffusivité

S le coefficient d’emmagasinement de la nappe, et R le rayon de 'ouvrage au droit de la nappe (rayon du
trou de forage). Soit R’ le rayon de I'ouvrage & la cote ol se trouve le niveau statique de ’eau, supposé a
I’équilibre, avant I'essai. R’ sera généralement le rayon intérieur du tubage. Au temps t = 0, on fait varier
brusquement la charge dans I'ouvrage de rayon R’ d’une quantité Ah, (injection du soutirage d’un volume
d’eau TIR'2Ah,). On observera P’évolution avec le temps de la charge résiduelle Ah(t) dans le tube. Elle est
donnée par:

Ah(t) 4o [*exp (—Tuz/RQS)du
Ah, ~ T2 ), wF(u)

avec a = S(R/R')?
F(u) = [uJo(u) — aJ1(u)]? + [uYo(u) - aYi(u)]?

Jn'Y, = fonctions de Bessel de 1°T€ oy 28me espece et d’ordre n.
|
| <
NEER
[ \ miliieﬁ' p'o-rqqx:‘. .f
A\ IS\ RS

=y

\\k\\\\\\\\ﬁ{g\\\\\\\\\\\\ : 2R Resistance "'k

Cette solution est représentée P1.9 en coordonnées bilogarithmiques (Degallier et Marsily, 1977). On
trace sur un calque bilogarithmique de méme module les mesures Ah/Ah,, en fonction du temps. La
superposition graphique de la courbe mesurée sur ’'abaque permet de déterminer a et la correspondance
temps réduit/temps réel. On en tire:

T= R’z/t,'
t;: temps réel coincidant avec le temps réduit de 1 sur ’abaque

S = o(R'/R)?

Carslaw et Jaeger envisagent aussi les cas ol les observations sont faites 4 une distance r > R du forage,
ou encore ol il existe une résistance de contact entre le forage et la nappe.

Si la cavité sur laquelle est réalisé I’essai de choc hydraulique est de forme sphérique, la solution est
donnée par les mémes auteurs par:

Ah(t)  207? /°° exp (= Ktu?/S, R*)u? ”
Ah, T I J, (w3(147) - ar?)? + (u¥ - au)

avec K,S,: perméabilité et coefficient d’emmagasinement spécifique de ’aquifére,
a = 4S,R(R/R’)*: rapport des capacités,
¥=K'R/Ke: contraste des résistances.

La sphere de rayon R est en contact avec I’aquifere & travers une couche résistante d’épaisseur e et de
perméabilité K'. La perturbation de charge Ah, initiale est réalisée dans un tube de rayon R'.

Cette solution dépend de deux paramétres, a et v, et du temps réduit. La série d’abaques correspon-
dantes a été publiée par Degallier et Marsily (1977). Elle peut étre utile pour des essais sur des tensiométres
de forme voisine d’une sphere, dans le non saturé, ou sur des poches pseudo-sphériques ouvertes i la base
d’un piézometre non crépiné, ou crépiné sur une faible longueur.
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Chapitre 9

TRANSPORT DE MASSE ET D’ENERGIE
EN MILIEU POREUX

9.1 Ecoulements polyphasiques (fluides 9.1.5 Problémes de pollution polyphasique
non miscibles) 9.2 Ecoulements de fluides miscibles
9.1.1 Théorie 9.2.1 Lois du transport en solution des
9.1.2 Cas particulier, écoulement éléments conservatifs
en milieu non saturé 9.2.2 Lois des interactions (éléments
9.1.3 Mouvements d’interface de non conservatifs)
séparation 9.2.3 Solutions analytiques de I’équation
9.1.4 Cas particulier: interface de la dispersion
eau douce-eau salée 9.3  Transferts de chaleur en milieu poreux

Nous nous sommes intéressés jusqu’ici essentiellement aux phénoménes de transmission des pressions (ou

des charges) et a leurs conséquences en termes de débit, sans nous intéresser au transfert de ’eau proprement
dite.

Nous abordons ici une autre classe de probleme: celle des transports qui ont lieu avec 'eau. Nous
parlerons des écoulements:

- de fluides non miscibles
- de fluides miscibles en milieu poreux
- de chaleur

Les problemes qui y sont liés sont trés nombreux: écoulement en milieu non saturé, récupération
d’hydrocarbures, pollution. .. ; et pour la chaleur: géothermie, climatisation, stockage de chaleur.

9.1. ECOULEMENTS POLYPHASIQUES (FLUIDES NON MISCIBLES)

9.1.1. Théorie
C’est, par exemple, le cas de I'air et de ’eau (milieu non saturé), de I'huile, de I'eau et du gaz (gisements

pétroliers).

a) Saturation

On définit d’abord la saturation volumique pour chacun des fluides ::

__ Part de la porosité occupée par le fluide ¢

i =

Porosité totale
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s; varie entre 0 et 1.

b) Loi de Darcy

On admet ensuite que chaque fluide i suit séparément la loi de Darcy, comme s'il occupait une certaine
portion du milieu poreux.

—_— F" —— —_—
Ui=-— [gradp; + pig grad z]

= . . 0
U ; = vitesse de Darcy du fluide ¢
Wi, pi,Pi = sa viscosité, masse volumique et pression.

Les vitesses de Darcy de chaque fluide ne sont évidemment pas paralléles, et peuvent méme, dans certains
cas, étre diamétralement opposées (eau et gaz par exemple).

Cependant, la perméabilité intrinséque k; sera une fonction de la saturation du milieu en fluide i. Plus
la portion du milieu poreux occupée par le fluide i sera grande, plus la perméabilité liée a ce fluide sera
grande. On définit généralement la perméabilité relative par:

k.
P
T: k

k étant la perméabilité intrinséque (saturée) du milieu poreux.

Par exemple, pour deux fluides (air et eau), on obtient des courbes ayant Pallure suivante:

0 s3turation irréductible 100%  saturation en eau

En dessous d’une certaine saturation limite (en eau par exemple), la phase eau n’est plus continue et la
perméabilité a I’eau est nulle. On peut noter au passage que la somme des deux perméabilités intrinséques
de deux fluides n’est pas constante, et est toujours inférieure ou égale & la perméabilité intrinseque: les deux
fluides, en quelque sorte, se génent mutuellement.”

Ces courbes de perméabilité relative sont déterminées expérimentalement sur échantillon. Elles ne sont
malheureusement pas biunivoques et subissent des cycles d’hystérésis, comme la pression capillaire (cf. §
2.2.2.¢) suivant que l’'on réalise un drainage ou une imbibition. On néglige cependant trés souvent cette
hystérésis.

. kri Y . .
On appelle parfois le rapport — la “mobilité” du fluide i.
i

¢) Equation de continuité

On écrit une équation de continuité pour chaque fluide:

. — 7]
div (p; U;) + E(pisiw) =0

* Dans certaines expériences d’écoulement d’eau, d’huile et de gaz, on a mesuré expérimentalement des sommes de
perméabilités relatives supérieures & 1 (jusqu’a 2). On a tenté d’expliquer ceci en disant que I'un des fluides sert de
“lubrifiant” & I’écoulement des autres.
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ou p;s;w est la quantité de fluide i contenue dans I’élément de volume unité.

d) Relation entre les saturations

Ys;=1 (par définition)

e) Existence de la pression capillaire

Nous avons vu, au § 2.2.2.c, qu’il existe entre deux fluides non miscibles, une interface qui engendre une
différence de pression entre les deux fluides. Cette différence de pression est appelée “pression capillaire”:

Pcij = Ppi —Dpj

On sait que la pression capillaire est liée au rayon de courbure r des ménisques formant les interfaces
entre les deux fluides, et a la tension superficielle o,; existant entre les deux fluides:

A cause de ce rayon de courbure, la pression capillaire est donc fonction de la saturation s; des fluides.
Si on se limite, par exemple, a deux fluides (air et eau):

Pyir — Peau = pe(s)

Nous avons représenté au § 2.2.2.c quelques courbes de pression capillaire en fonction de la satura-
tion. Malheureusement, nous avons également vu que ces courbes ne sont pas uniques, et qu’il existe des
phénomenes d’hystérésis entre p, et s, suivant que s augmente ou diminue:

Pe courbe de drainage
courbe d’humidification ou d'imbibition

cycle intermédiaire

100 %
Ces courbes sont obtenues expérimentalement.

f) Résolution

Si on ajoute a ce systéme les équations d’état des fluides et du milieu poreux (variation de w, p; avec
pi), on obtient un systeme d’autant d’équations que d’inconnues, qu’il faut résoudre.

Cette résolution est toujours numeérique, car il n’existe pas de solution analytique compléte. Les pro-
grammes de résolution sont relativement lourds et complexes, et principalement développés dans 'industrie
pétroliere.

Le probléme peut étre encore plus compliqué s’il y a des échanges entre phases (huile et gaz) et si I'on
tient compte des phénoménes thermiques liés & ces changements de phases (naturels ou lors d’injection de
vapeur dans un gisement). Il faut aussi tenir compte des variations de viscosité de chaque fluide.

g) Piéges capillaires et digitations

La circulation diphasique permet d’expliquer le phénomeéne de “piéges capillaires” qui est responsable
de la formation de certains gisements de pétrole dans les milieux poreux sédimentaires.

Imaginons un écoulement d’huile et d’eau, 'huile étant supposée étre le fluide non mouillant. Une goutte
d’huile étranglée dans un pore trop petit se présentera de la facon suivante:
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A4

—_——

S\

Du fait des gradients de pression de 1'écoulement, elle aura, entre I’amont et I’aval, une différence de
rayon de courbure, ry et ro. Pour que la goutte franchisse le passage étroit du pore, il faudra lui appliquer
un gradient de pression minimum fournissant un rayon r; suffisamment petit. En dessous de ce gradient, la
goutte d’huile est “piégée”.

Un autre probléme posé par les écoulements diphasiques est celui des instabilités, ou digitations. Sil’on
tente de déplacer un fluide A par un fluide B, au lieu d’avoir une interface abrupte entre les deux fluides,
ou encore une zone de transition ol la saturation varie de fagon continue entre A et B, on constate bien
souvent que le fluide A pénétre, par exemple, le fluide B comme un “doigt”:

—— ———
fluide A fluide B

C’est le phénoméne de digitation qui caractérise un écoulement instable. Les conditions de stabilité ou
d’instabilité d’un écoulement biphasique sont assez complexes, et font intervenir viscosité, densité, perméa-
bilités relatives et vitesse d’écoulement. Voir Marle, cours de production de I'LLF.P.

9.1.2. Cas particulier: écoulement en milieu non saturé

On fait généralement I’hypothése que la phase air est immobile dans les sols non saturés et l'on ne
calcule le mouvement que dans la phase eau:

- On détermine d’abord expérimentalement la relation perméabilité de Darcy-teneur en eau (ou satura-
tion) que 'on admet étre univoque (pas d’hystérésis).

<]

-0©

- On néglige la compressibilité de I’eau et on écrit la loi de Darcy en utilisant la charge:

U = -K(©)grad h

La charge est définie, comme d’habitude, par:
h= P +z
pg

mais la pression de I’eau est alors négative (on parle de la succion: 1=—p).
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- On utilise la charge h comme variable, et on passe de la charge h a la teneur en eau © par une relation
expérimentale succion-teneur en eau qui, elle, présente les phénoménes d’hystérésis, dont on tient - ou

non - compte.

succion d/ =-p

@ teneur en eau

On écrit alors I’équation de continuité:
e g
div (pU) + 5-t-(p6) =0
60

soit div T + B 0 car on suppose p constant et le milieu poreux incompressible.
La loi de Darcy donne T en fonction de la charge h. Il reste a exprimer la variation de teneur en eau
d© en fonction de la variation de charge dh dans l'intervalle de temps unité, et en un point fixe donné.

Si 'on se place en un point de plan ¥(©) et sur un cycle donné d’humidification-drainage, la variation
de © avec i est donnée par la pente de la courbe ci-dessus:

do do
d@ = Ed‘q{) = —wdp
La variation de pression est liée a la variation de charge en un point fixe donné:
dp = pgdh
On obtient donc: div (K(©) grad h) = —pg @ Qﬁ
dy ) Ot

Cette équation est trés fortement non linéaire et est résolue numériquement. Voir en particulier les
travaux de Vauclin et al. (1979).

L’avantage d’écrire cette équation en charge, et non en teneur en eau comme on pourrait également le
faire, est que:

- la charge est continue quand on passe du milieu saturé au non saturé; on modélise ’ensemble du
milieu de fagon continue;

- la charge est également continue méme si le milieu n’est pas homogene: il y a, en revanche, discon-
tinuité des teneurs en eau au contact de deux milieux de caractéristiques différentes.

9.1.3. Mouvements d’interface de séparation
On peut parfois admettre que, lors du déplacement de deux fluides non miscibles, 'un d’eux déplace

entiérement ’autre: chaque fluide occupe en totalité le milieu poreux ou il se trouve (saturation 1) et une
interface abrupte est supposée exister entre deux fluides:

C fluidet Lo e fluide2 o
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On résout alors I’équation de continuité (en appliquant la loi de Darcy) dans chacun des domaines
séparément et on déplace la limite de séparation au cours du temps, en supposant que Pécoulement est
stable.

Les conditions aux limites qui existent a I'interface sont:
- égalité des pressions p; = ps
(On néglige l'existence d’une pression capillaire car Pinterface, étant supposée plane, a un rayon de
courbure infini).
- égalité des vitesses de Darcy normales de déplacement des fluides:
Oh; Oh;

Ki— =K

on = Kign ="

Le déplacement de D'interface est donné par la vitesse microscopique moyenne normale des deux fluides
a I'interface:

V=— w, : porosité cinématique

9.1.4. Cas particulier: interface eau douce-eau salée

Ce type de contact reléve en fait des écoulements de fluides miscibles. On le traite cependant souvent
en faisant les deux hypothéses suivantes, pour le contact des eaux douces des aquiféres cdtiers avec la mer:
I’eau salée est immobile,

- Teau douce s’écoule sur I’eau salée avec une interface abrupte sans mélange.

Cette approximation est & peu prés valable si le régime d’écoulement est permanent, donc avec une
interface immobile. En eflet, on observe dans la pratique une zone de transition entre I’eau douce et I'eau
salée qui est d’épaisseur trés réduite (de 'ordre du metre):

exutoire niveau de la mer

eau salée immobile " :*. .

. o, te .

- 17 %L zone de transition (interface)
Py

e

La faible épaisseur de cette de transition immobile s’explique par le fait que I’eau douce s’écoule vers
Pexutoire littoral et entraine constamment les eaux salées qui diffusent.

En revanche, si “I'interface” se déplace, soit sous I'influence de la marée ou des variations du débit sortant
de la nappe vers la mer (variations naturelles ou dues aux prélévements), la zone de transition devient plus
importante, et le probleme doit étre traité en écoulements de fluides miscibles si I’on s’intéresse a ce qui se
passe au voisinage du contact (probléme de I'invasion des nappes cotieres par les eaux salées).

Mais plagons-nous dans le cas du régime permanent avec interface abrupte:
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équipotentielle ." AT S T s

La surface libre et le “biseau salé” sont des lignes de courant de ’écoulement. Les équipotentielles leur
sont donc orthogonales.

En un point P (de cote z) du biseau, I’égalité des pressions et I'immobilité de ’eau de mer nous
permettent d’écrire (1=eau douce, 2=eau salée):

P2 = —p2gz

- z=-—p1gh
p1=—p19z + prghy } (P2 = pr)g pram

soit 2= - 1 hA
pP2—p1

La profondeur z de l'interface est liée a la charge h dans ’eau douce et au contraste de densité.

A 32 g/l de sel, la masse volumique de ’eau de mer est voisine de 1,025 t/m3. Ceci donne:

z ~ —40h

Cette relation est connue sous le nom de “principe de Ghyben-Herzberg”. Si 'on admet de plus que
les équipotentielles sont verticales, et la surface libre de pente constante (toutes deux approximations assez
grossiéres), on obtient comme premiére approximation du biseau salé une droite:

biseau

Ceci permet, en premiére approximation, d’estimer, sur une nappe cdtiére, la profondeur probable de
Pinterface eau douce-eau salée. Si, par exemple, 4 200 m du rivage, la charge piézométrique est de 2 m
au-dessus du niveau de la mer, la profondeur du biseau sera d’environ 80 m, 2 moins qu’il n’ait déja été
arrété par le substratum de la nappe (c’est-a-dire si la nappe n’a pas 80 m d’épaisseur):
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. . . . ..
. .

. substratum ")

oLt e ,«;:!ie'd»dl.;l.)is.eau AR
T T ST S iz Z e

Verruijt a cependant calculé exactement la forme de la surface libre et du biseau dans le cas du milieu
homogéne infini: pour un flux constant s’écoulant en mer, on montre facilement, en calculant le potentiel
complexe de 1'écoulement, que surface libre et biseau sont en fait deux portions de parabole d’équation:

: 2Q Q* 1-p3 .
biseau: T tentiel complexe:
e s che B i
surface libre: 2% = ———zﬁi—z Ky= 28Q i
Y (S )
avec: z compté positivement vers le haut & partir du niveau de la mer,

z compté positivement vers la mer a partir du rivage,

Q est le débit d’eau douce s’écoulant dans I’aquifere vers la mer par unité de longueur perpen-
diculaire au plan de figure,
8= pPz2—p1
P1
y = z + iz, affixe complexe,

K est la perméabilité du milieu.

9.1.5. Problémes de pollutions polyphasiques

Il s’agit essentiellement de la pollution des nappes par les hydrocarbures, seuls fluides usuels non mis-
cibles & l’eau. Ils sont complexes a traiter car, la pollution des nappes se faisant par leur surface, il faut
d’abord traiter le transfert des hydrocarbures & travers le non saturé. On s’apergoit alors qu’il faut une
relativement grande quantité d’hydrocarbures pour que la pollution arrive a la nappe, une fraction impor-
tante étant retenue par capillarité dans la zone non saturée, puis également dans la zone saturée, par des
phénoménes d’adsorption dont nous parlerons ultérieurement. Ils s’apparentent ici a la constitution dans le
sol d’une saturation minimum en huile, en-dessous de laquelle la phase huile ne peut pas circuler.

Une fois arrivée au toit de la nappe, I’huile s’y accumule et migre vers I’aval. La figure suivante, extraite
de Freeze et Cherry et de Schwille, illustre ce processus.
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INFILTRATION

Surface libre

— — €coulement

ETALEMENT
Situation intermédiaire

ETALEMENT
Situation finale

langue d’hydrocarbures

MIGRATION

26ne en gaz (évaporation)

— e
—~— el

—— - ————

z0ne d’'entrainement
des hydrocarbures dissous

Il ne faut pas oublier cependant que certaines fractions des produits pétroliers (les séries aromatiques

particuliérement, certains phénols) peuvent étre solubles dans 1’eau, et se propager comme fluides miscibles
polluant rapidement les nappes (goits).

La phase organique retenue par capillarité dans la zone non saturée est peu a peu résorbée par une

décomposition bactérienne des produits pétroliers. Mais ceci peut prendre plusieurs années. Voir aussi les
travaux de Zilliox (Fried et al., 1979).

9.2. ECOULEMENTS DE FLUIDES MISCIBLES

Les fluides étant miscibles, on ne considérera plus qu’une seule phase fluide, et on définira la con-

centration d’une substance dans l’autre: par exemple, concentration d’eau salée dans I’eau douce, ou plus
simplement de sel dans 'eau.

Il n’y aura plus d’interface, mais une variation continue de la concentration dans le milieu. C’est la
concentration C qui sera la variable principale. On appelle “transport en solution” ce type de déplacement.

9.2.1. Lois du transport en solution des éléments conservatifs

Pour séparer nettement ce qui est lois du transport des lois d’échange entre les éléments transportés et
le milieu, nous traiterons, dans ce paragraphe, du mouvement des éléments ne subissant aucune modification

ou échange en parcourant le milieu poreux: on les appelle les éléments conservatifs. Ceci exclut donc aussi
bien la décroissance radioactive que les phénoménes d’adsorption.
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Dans le paragraphe 9.2.2., nous traiterons du probleme des éléments non conservatifs et verrons comment
les lois particuliéres du comportement des éléments non conservatifs viennent se rajouter aux équations du
transport proprement dites.

Il est d’abord nécessaire de bien caractériser ce que I'on entend par transport d’éléments en solution. Au
premier chef, il s’agit d’éléments qui sont inclus dans des combinaisons chimiques formant des sels solubles
dans I’eau. Ces sels peuvent eux-mémes étre plus ou moins ionisés*, suivant leur force ionique. Cependant,
ces éléments dissous peuvent également étre présents sous forme de complexes chimiques électriquement
neutres, formés d’agrégats de différentes molécules ou ions.

Par ailleurs, des sels dits “insolubles” peuvent cependant étre transportés en solution en éléments-traces,
cette “insolubilité” n’étant jamais nulle en réalité; compte tenu des trés faibles concentrations auxquelles
certains radioéléments sont toxiques, par exemple, ces éléments-traces peuvent ne pas étre négligeables dans
les calculs de siireté radiologique.

Il faut enfin y ajouter les éléments transportés dans des agrégats moléculaires plus importants, tels que
des micelles ou des colloides, qui sont éventuellement susceptibles d’étre retenus par filtration mécanique
dans le réseau du milieu poreux, compte tenu de leur diametre.

Tous ces éléments transportés sont dits “en solution” dans la mesure ol ils ne constituent pas une phase
mobile différente de la phase fluide, mais s’intégrent a 1'unique phase fluide (I'eau du milieu naturel) en y
modifiant éventuellement les propriétés physiques (masse volumique et viscosité) et chimiques.

On oppose ainsi le transport en solution aux écoulements de fluide immiscible, tels que les écoulements
d’huile et et d’eau, dont les lois de migration sont entierement différentes.

Quand des éléments en solution sont transportés par un fluide en mouvement, on définit, pour carac-
tériser le transport, la concentration volumique du fluide qui circule en chacune des substances en solution.
On Pexprime généralement en g/l ou mg/l, ou encore, pour des radioéléments, en multiples ou fractions de
la C.M.A.P. (Concentration Maximum Admissible dans 'eau de boisson pour la Population, définie par les
arrétés officiels).

Nous allons maintenant préciser les lois du transport dans les milieux poreux et fissurés.

a) Milieu poreux

On distingue classiquement trois mécanismes principaux de migration: la convection, la diffusion et la
dispersion cinématique.

- La convection:

C’est Ventrainement des éléments en solution dans le mouvement du fluide qui se déplace. Clest le
phénomeéne le plus intuitif de déplacement. Il est cependant nécessaire de définir avec précision:
- quelle est la partie effectivement mobile du fluide présent dans le milieu poreux,
- quelle est la vitesse réelle de mouvement de ce fluide.

En effet, dans un milieu poreux saturé, on doit distinguer deux fractions fluides, celle qui est liée au
solide par des forces d’attraction moléculaire, dite eau liée, et celle qui est libre de circuler sous ’action des
gradients de charge hydraulique, dite eau libre. En réclité, particulierement pour les milieux peu perméables,
la fraction libre dépend en fait de I'importance des gradients de charge: pour les argiles, les écarts a la loi
de Darcy que nous avons signalés plus haut s’accompagnent d’une augmentation de la fraction d’eau libre
au détriment de la fraction d’eau liée quand les gradients de charge augmentent.

On est donc amené & définir une “porosité cinématique” w, correspondant 4 la fraction des vides du
milieu poreux occupée par de I’eau en mouvement. Cette porosité cinématique est donc éventuellement
fonction du gradient, mais de telles mesures n’ont jamais été réalisées.

* La terminologie récente anglo-saxonne appelle ion tout sel en solution, qu’il soit ou non chargé électriquement.
. . . . 13 V- ’ . . .

Ainsi, par exemple, CozCa en solution, non dissocié en Co§+, Ca®~, sera appelé un ion complexe électriquement

neutre.
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Si ’on suppose que le transport est régi par ce seul phénomene de convection dans la fraction fluide
en mouvement, ’équation résultante du transport s’obtient aisément a l'échelle du volume élémentaire par
application du principe de conservation de la matiére.

Considérons un volume élémentaire de milieu poreux D, de frontiere extérieure £. La conservation de
la masse de I’élément transporté dans le volume D s’écrit:

Intégrale sur ¥ du flux massique de I’élément transporté entrant dans D = varia-
tion de la masse de I’élément dans le volume D dans I'intervalle de temps unité.

Le flux volumique de fluide traversant la surface ¥ est donné par I'intégrale de la vitesse de Darcy U
sur X; ce flux volumique se transforme en flux massique de 1’élément transporté en multipliant scalairement
la vitesse de Darcy U par la concentration C: le premier membre de ’équation de conservation s’écrit (flux
massique entrant dans D):

/ CU #ido
z

n étant la normale sur ¥ orientée vers 'extérieur de D.

La masse de ’élément transporté contenu dans le domaine D s’obtient en sommant les volumes élémen-
taires de fluides w.dv contenus dans le milieu poreux, multipliés par la concentration volumique C du dit
fluide en élément considéré:

/ w.Cdv
D

La porosité w. qu’il faut utiliser est ici la porosité cinématique (c’est-a-dire la fraction de fluide qui
circule) car nous supposons pour l'instant que c’est elle seule qui peut contenir I’élément transporté; ailleurs
la concentration C est nulle. On fait donc ici 'hypothese que I'on peut définir dans le volume D une
concentration moyenne C résultant du mélange, dans la fraction fluide de D, de tous les éléments contenus.

La variation de cette masse dans l'intervalle de temps unité s’obtient simplement en dérivant cette
expression par rapport au temps:

9
8t Jp

ocC
wchv_/ch—é?dv

le passage de la 187€ forme a la 26™M€ g’effectuant par la régle de Leibnitz, D étant fixe et w, étant supposé
constant.

En égalant les deux membres, il vient:

- oC
/SCU.nda—/;)wcatdv

On transforme l'intégrale de surface du 1°T membre en intégrale de volume par la formule d’Ostrogradsky:

/C—ﬁ.nda = —/ div (C-ff)dv
z D

soit:

—/ div (CU)dv:/ wc?—qdv

En supprimant les signes intégrale dans les deux membres, car D est arbitraira:

ocC

—div (CT) = wegr

(9.2.1.1)

- La diffusion moléculaire:
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C’est un phénomene physique lié & Iagitation moléculaire: dans un fluide au repos, le mouvement
brownien envoie des particules dans toutes les directions de l'espace. Si la concentration du fluide est
homogéne dans ’espace, deux points voisins envoient, en moyenne, autant de particules*, 'une vers I'autre,
et agitation moléculaire ne modifie pas la concentration de la solution. Cependant, si la concentration de
la solution n’est pas homogéne dans Pespace, autrement dit s’il existe un gradient de concentration entre
deux points voisins, le point ayant la concentration la plus élevée enverra en moyenne plus de particules dans
toutes les directions que le point ayant une concentration faible. La résultante de cette agitation moléculaire
sera donc un transfert de particules des zones & concentration élevée vers les zones a concentration faible.

Fick a établi que le flux massique de particules est, dans un fluide au repos, proportionnel au gradient
de concentration:

d?:—d,,f;?a—éc

Le coefficient de proportionnalité d,,, baptisé coefficient de diffusion moléculaire, est isotrope et s’exprime
par:

RT 1

do = 1 Slar

dimension [L2T~1]
avec: R = constante des gaz parfaits = 8,32 unités MKS (5i), [ML?T-%2°K~1,
N = nombre d’Avogadro = 6,023x10%,
T = température absolue (degré Kelvin) = température °C + 273,15,
p = viscosité du fluide,
r = rayon moyen des agrégats moléculaires qui diffusent.
Par exemple, pour CIN dans l'eau a 20°C, d, = 1,3x10° m?/sec.

Si le transport d’éléments dans un fluide au repos est seulement du i la diffusion de Fick, on établit
simplement, par le principe de conservation de la matiére, la loi de mouvement, exactement comme plus

haut:
- L a
/ ¢.ndo = —/ div (¢)dv :J——Cdv

soit, en remplagant ¢ par sa valeur et en supprimant les intégrales:

div (d, grad C) = %?
connue sous le nom de loi de Fick.

En milieu poreux, la diffusion moléculaire se poursuit dans I'ensemble de la phase fluide (aussi bien celle
qui s’écoule que celle qui est immobile). Seul le solide arréte (ou tout au moins ralentit trés fortement) le
mouvement brownien des particules. 1l en tésulte, pour un fluide dans un milieu poreux qui ne s’écoule pas,
un coefficient de diffusion en milieu poreux qui est plus faible que d,.

On admet généralement que le rapport d/d,, appelé la tortuosité du milieu vaut:

F = facteur de formation des géophysiciens, défini
1 par le rapport résistivité électrique de la roche
Fuw sur résistivité de ’eau contenue.

w = porosité totale.

4
d

d
En pratique, T varie de 0,1 (argiles™) a 0,7 (sables).

* Nous nous intéressons, ici, aux particules des éléments en solution, pas a leau.

** Neretnieks cite des mesures de — jusqu’a 0,01 pour de la bentonite trés compactée, pour des gaz, le césium et le
o
strontium.



162 Transport de masse et d’énergie en milieu poreux

Pour un fluide qui circule en milieu poreux, on combine aisément les phénoménes de convection et de
diffusion en établissant de nouveau la conservation de la masse de 1’élément transporté dans un volume D
élémentaire, en sommant les deux flux de matiére au 1°T membre:

16T membre: / ¢.iido + / CU .Ado = — / div (wé + CT)dv
z = D

La porosité totale intervient car intégrale du flux diffusif ¢ sur T est nulle sur le solide de proportion
(1 — w), alors que la vitesse de Darcy est définie comme si la surface totale ¥ était offerte a I’écoulement.

: i) g
2°M€ membre: = [ w.Cdv+ = / (w—we)C'dv
ot J ot Jp

Nous sommes en effet obligés de prendre en compte deux porosités, la porosité cinématique w, corre-
spondant a la fraction mobile de la phase fluide, ayant la concentration C, et la porosité correspondant a la
fraction immobile w —w, (w étant la porosité totale), ayant une concentration C’ qui peut étre différente de

C.

Dans le cas de la convection pure, seule la fraction mobile du fluide pouvait contenir les éléments
transportés, alors que maintenant, la fraction immobile contient nécessairement ces éléments puisque la
diffusion moléculaire va les faire pénétrer dans la fraction immobile.

Cette équation s’écrit, en substituant et simplifiant comme plus haut:

. — ocC ac’
div (wdgrad C = CT) = wegr + (= we) (9.2.1.2)
Un probléme se pose de savoir s'il faut faire intervenir C’ dans les flux entrant au 1°F membre. Pour la
convection, il est évident que seule la concentration C de la fraction mobile apporte des éléments au volume
de référence. Pour la diffusion, les fractions immobiles de part et d’autre de la surface ¥ du volume de

référence échangent des éléments en fonction du gradient de C’. Il faudrait, en toute rigueur, écrire le terme
diffusif:

we div (d, grad C) + (w — w,) div (d, grad C')

w. étant la fraction de la surface ¥ occupée par du fluide mobile, diffusant alors avec un coefficient dj,
et (w — wc) étant le reste de la fraction fluide de T (fluide immobile) a travers laquelle la diffusion sur la
concentration C' s’effectue avec un coefficient de diffusion dy. d; et ds seraient probablement respectivement
plus forts et plus faibles que le coefficient global d.

Nous négligerons cet effet, en particulier en raison de I’existence de la dispersion cinématique, qui rend
déja elle-méme la diffusion presque négligeable.

Nous verrons au paragraphe 9.2.2.a. comment la concentration C’ de la fraction immobile peut se
regrouper avec I’adsorption sur la phase solide du milieu poreux.

- La dispersion cinématique:

C’est un phénomeéne de mélange essentiellement lié & ’hétérogénéité des vitesses microscopiques, quelle
qu’en soit ’échelle d’observation, au sein du milieu poreux.

- A lintérieur d’un pore, les vitesses ne sont pas uniformément réparties dans la fraction mobile, en régime
laminaire, comme l'indique la formule de Poiseuille dans une conduite cylindrique:

\\ distribution parabolique
—= des vitesses

4

,

vitesse



Transport de masse et d’énergie en milieu poreux 163

Ceci entraine une propagation plus rapide des éléments transportés dans l'axe des pores d’ou, par
mélange et diffusion moléculaire, un étalement progressif des éléments transportés par rapport au mou-
vement moyen de convection.

- De pore & pore, la différence des ouvertures et des longueurs de trajets engendre une diflérence des
vitesses moyennes:

S5

Les fluides passant par chacun des chemins se mélangent et engendrent une dilution de la concentration.

Notons que ce processus entraine également un étalement de la propagation des éléments par rapport a
la direction principale de ’écoulement:

e
Z%g

. Une stratification, ou tout élément d’hétérogénéité a plus grande échelle tel que lentilles, intercalations,
zones broyées ou fissurées, etc. . .introduit de méme une hétérogénéité du champ des vitesses, engendrant

par les mémes mécanismes que ci-dessus un mélange, un étalement dans toutes les directions de ’espace
des éléments transportés par le fluide.

La dispersion cinématique est donc en fait le résultat de I’existence d’un champ de vitesse réel fort
complexe et inconnu, que I’on néglige totalement dans la convection quand on utilise la vitesse fictive moyenne
de Darcy (qui suppose que I’ensemble du milieu continu est sujet a I’écoulement). Cette vitesse de Darcy
est malheureusement la seule que ’on puisse atteindre macroscopiquement par le biais de la perméabilité;

mais elle a cependant I’avantage d’étre exacte au niveau de I'intégrale sur une surface donnée pour calculer
un bilan des flux.

La décomposition du transfert en terme convectif représentant le déplacement moyen et un terme dis-
persif intégrant les effets des hétérogénéités est purement arbitraire; le role respectif de chacun des termes
dépend essentiellement du degré de finesse avec lequel le milieu poreux peut étre décrit.

Quelle forme mathématique donner & la dispersion cinématique ? La réponse peut étre soit théorique,
soit expérimentale.

Le développement de la théorie, essentiellement dd & Taylor, Scheidegger, Bear, Bachmat et Friea. a

été établi en considérant une distribution aléatoire dans ’espace de canalicules représentant les conduits a
travers les pores du milieu poreux.

La formule mathématique proposée consiste 4 adopter une loi de transfert par dispersion représentant
ces phénoménes de mélange analogue a la loi de Fick:

Flux dispersif 6= -D gradC
qui s’applique sur toute la section du milieu, comme la vitesse de Darcy, mais avec un coefficient de dispersion
D qui est: .
- un tenseur, supposé étre symétrique et du 2¢™€ ordre .
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- ayant comme direction principale la direction du vecteur vitesse de I’écoulement (donc lié au flui-
de et non pas au milieu), les deux autres directions principales étant généralement quelconques,
orthogonales a la premiére,

- enfin, les coefficients du tenseur sont eux-mémes des fonctions du module de la vitesse d’écoulement.

Si I’on exprime le tenseur de dispersion dans les directions principlales d’anisotropie, il se réduit a trois
composantes:

D, 0 0
D=|{0 Dr 0
0 0 Dr

Dy étant le coefficient de dispersion longitudinale (dans le sens de ’écoulement) et Dr le coefficient de
dispersion transversale (dans les deux directions orthogonales 4 la vitesse).
Ce flux dispersifﬁgrad C s’ajoutera au flux diffusif udgrad C au 1*T membre de I’équation (9.2.1.2).

La valeur de ces coefficients de dispersion varie avec la valeur du module de la vitesse de Darcy ou de
la vitesse microscopique moyenne d’écoulement:

e =
We

On définit pour cela un nombre de Péclet sans dimension:

u*| vk UlVk *| ¢
Pe =l IVE _ | N—,ouPe:l"'
do wcdo do
avec: |u*| = module de la vitesse microscopique moyenne,
k = perméabilité intrinseque,
d, = coefficient de diffusion moléculaire,

(4
£ = longueur caractéristique du milieu poreux (diamétre moyen des grains ou des pores).

Expérimentalement, au laboratoire de I'lLF.P., O. Pfankuch a vérifié la validité de cette loi de dispersion
proposée par la théorie, et a établi la relation empirique liant les coefficients de dispersion au nombre de
Péclet. En fonction du nombre de Péclet, on définit cinq régimes d’écoulement et, pour chacun d’eux, une
relation empirique entre Dy, Dr et Pe. Ces cinq régimes sont représentés sur la figure suivante:

Iog10 DL/dO
7 log10 DT/do
6 3
log1o DL /u*1Q 5
2 ; 2 ) :;_:(1/'
! 1 L
0 2 ol
. 2y 0 "
A g . 0 —
) :u\; W v
1012346586 10123456 0O 1 2 3 4

logqg Pe=lu*l2/do

Ces cing régimes de dispersion correspondent a des répartitions variables entre les roles joués par la
diffusion moléculaire et la dispersion cinématique:
I - diffusion moléculaire pure,
II - superposition,
11 - dispersion cinématique prédominante,
IV - dispersion cinématique pure,
V - dispersion cinématique hors du domaine de validité de la loi de Darcy.



Transport de masse et d’énergie en milieu poreux 165

Dans le domaine des vitesses usuelles (domaine 111 et IV, Pe > 10), on admet généralement les relations:

Dy =ar|U|
Dt = ar |U]

ar et ar, qui ont la dimension d’une longueur, sont baptisés coefficient de dispersion intrinséque, ou disper-
sivité.
ar en laboratoire, sur colonne de sable, est de 'ordre de quelques centimetres. Sur le terrain, il est de
'ordre du métre a la centaine de métres, en fonction du degré d’hétérogénéité de la formation - voir
Lallemand-Barrés et al. (1978);
ar est beaucoup plus petit: entre 1/5 et 1/100 de ar.

On peut aussi adopter une forme plus générale des coefficients de dispersion, prenant en compte ex-
plicitement le coefficient de diffusion moléculaire d, pour étendre la validité du modele du coté des faibles
nombres de Péclet, c’est-a-dire des régimes I et I1 ol la vitesse de Darcy est faible.

(9.2.1.3)

D, = wd+aLlUl}
Dr wd+OITIU|

d étant le coefficient de diffusion moléculaire, et w la porosité totale. Ce terme ne joue un role que si |U] est
tres petit.

L’équation du transfert prenant maintenant en compte la dispersion cinématique, qui se substitue au
terme de diffusion, s’écrira:

. E ocC ocC’
div (D gradC — C—l7) =we—— + (W —we) o~ (9.2.14)
ot ot
Dans ce cas, le transfert dispersif cinématique porte bien sur la fraction mobile a concentration C, et
non pas sur la fraction immobile & concentration C’.

Si I'on fait maintenant 'hypothése, pour simplifier, que la concentration C' dans la fraction mobile
se met instantanément en équilibre avec la concentration C’ dans la fraction immobile, par le jeu de la
diffusion moléculaire, et vu l'extraordinaire interpénétration des deux fractions I'une dans l'autre, alors on
peut admettre que:

c=C

et div(DgradC — CT) = w%% (9.2.1.5)

qui est la forme usuelle de 1’équation de la dispersion. Si'on divise par w la porosité totale, on fera apparaitre
une vitesse fictive moyenne:

v

w

T =

On peut, de plus, diviser les coeflicients de dispersion par w:

=’ p——
D:2
w
soit D'L:d+a—LlU|
w

Dp=d+ =L 41U

que l’on peut encore écrire:
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{DLI = d+aL|u'l
Dpr = d+a7~|u’|

ce qui montre que les dispersjvités ar et ar restent les mémes quelle que soit la forme donnée a I’équation
de la dispersion (avec w au 26™€ membre ou non).

Alors ’équation de transport s’écrit:

div (Dgrad C - C@') = %_f (9.2.1.6)

qui est la forme classique dans la littérature. Fried propose méme de Iécrire:

.= —C . _ 0C
dlv(ngrad;—Cu)— 5

quand la masse volumique p du fluide varie notablement, ce que nous ne supposerons pas dans la suite.

A Dinverse, si la fraction fluide immobile est supposée ne pas étre envahie par les éléments transportés,
on peut admettre que C’ = 0 et 1'équation du transport se réduit a:

. — — ac
div(DgradC—-CU) = wegr (9.2.1.7)
On peut également diviser les deux membres par w, pour faire apparaitre une vitesse convective fictive
oyenne — = u*.
moy o U

Cette discussion nous montre qu’il vaut mieux, contrairement a I’habitude, conserver la vitesse de Darcy
pour le terme convectif, et faire figurer explicitement la (ou les) porosité au 2¢™€ membre de I’équation.
Nous reviendrons également sur ce 26™€ membre dans la discussion sur I’adsorption (§ 9.2.2.a. 5¢™€ cas).

- Couplage de I’équation du transport avec celle du mouvement du fluide:

A Déquation du transport, il faut rajouter celle permettant de calculer la vitesse de Darcy U

—_ k — —
U= —;(grad p+ pggrad z) (4.1.6)

qui est 1’équation généralisée en pression, car p varie avec C. On dispose enfin de ’équation de continuité
du fluide avec ses équations d’état:

div (pU) + Z(pw) = 0 (3.2.3)
p=p(C)
n=p(C)

D fonction de U et du coefficient de diffusion moléculaire en milieu poreux d. (9.1.2.3)

Ces équations sont couplées et doivent donc étre résolues simultanément (la vitesse U dépend de la
concentration et réciproquement).

- Simplification de I’équation de la dispersion: hypothése du traceur:

L’hypothése du traceur consiste a découpler I’équation de variation de la concentration de celle donnant
la vitesse: la concentration C est supposée si faible que la masse volumique p du fluide est pratiquement
invariable: alors la vitesse U ne dépend pas de la concentration.
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On résout donc a part le probleme de I'écoulement, et il ne reste qu’a résoudre I'équation de la dispersion.
Celle-ci posséde quelques solutions analytiques (voir Bear et § 9.2.3.), mais la résolution doit le plus souvent
étre numérique, entrainant d’ailleurs pas mal de difficultés d’analyse numérique liées 3 la discrétisation, en
particulier I’apparition d’une “diffusion numérique”.

- Conditions aux limites de I’équation de la dispersion:

Pour imposer ces conditions  ’équation de la dispersion, il faut bien se souvenir qu’elle comporte deux
termes distincts: un terme diffusif et un terme convectif.

La nature d’une limite sera d’abord liée au sens du flux qui la traverse:

- limite a flux entrant: la concentration sur une telle limite sera fixée par la concentration du fluide
entrant:

c=0C,

- limite a flux sortant (par exemple exutoire du milieu géologique vers la surface, c’est-a-dire une nappe
superficielle, un plan d’eau douce ou salée, etc...): la concentration du milieu extérieur ne joue pas ici
de role dominant: on dira que le flux sortant par convection ne varie pas en concentration a la traversée
de la limite:

— 8C 9C _

U%"ZO soit %—0

on négligera alors le flux dispersif.
. . R . -, G .. . ocC
- limite hydraulique & flux nul: la vitesse U étant alors paralléle a la limite, le flux convectif U.—--—(9 sera
n

. _ec
toujours nul méme si —— ne 'est pas.
n

Sl n’y a pas de flux de soluté entrant ou sortant par diffusion pure a travers la limite, on écrira:
yap

oc
— =0
on
Au contraire, s'il y a un phénoméne de diffusion connu a travers cette limite, on écrira:
ac f
on

- Choix des coefficients de dispersion:

Les coefficients de dispersion (ou la dispersivité) peuvent étre mesurés sur colonne en laboratoire. Cepen-
dant, de tels coefficients ne sont que de peu d’utilité pour prévoir une migration réelle. En effet, sur le terrain,
les échelles d’hétérogénéités sont différentes et les coefficients beaucoup plus grands. Il faut donc les mesurer
par des expériences de tragage que l'on interpréte par des schémas analytiques ou numeériques.

On constate cependant que si 'on change I’échelle des expériences de tracage (échelles d’espace et
de temps), on obtient des valeurs différentes des coefficients. Le probléeme du choix des coefficients pour
prévoir des migrations sur de longues distances n’est donc pas entierement résolu. Aprés avoir mesuré
expérimentalement ces coefficients, a une certaine échelle, il sera nécessaire de simuler la propagation avec
des majorants de ces coefficients pour encadrer la migration réelle probable.

Matheron et Marsily (1980) proposent, pour un milieu stratifié, des lois de variation du coefficient
de dispersion moyen avec la distance parcourue, qui laissent espérer qu’apres un parcours assez grand, on
atteindra une valeur asymptotique constante. Mais la distance de parcours nécessaire peut étre assez grande,
500 m pour un aquifere alluvial pour fixer les idées. Un tel effet a été observé sur le terrain par Dieulin

(1980).

Remarque: On peut également mettre en doute, pour les forts coefficients de dispersion longitudinale, la
validité de la théorie qui ne distingue pas le sens de la circulation convective et le sens du gradient de
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concentration pour déterminer le flux dispersif. S’il s’agit seulement de la diffusion moléculaire, phénomeéne
isotrope dans toutes les directions, on congoit bien qu’il n’y ait pas lieu de distinguer le sens de I’écoulement.
Mais quand il s’agit de dispersion cinématique, la chose est différente.

Considérons, en effet, un axe £ (longitudinal) parallele 4 la direction de la vitesse d’écoulement, que
nous supposerons orientée dans le méme sens que ’axe £:

—-’
u — M

I

En un point M, les flux dispersifs et convectifs sont:

oc
¢¢=—0LIUIW+CU

On peut supprimer le signe valeur absolue et mettre la vitesse U en facteur:

ocC
¢ ==U (QLW - C)

. 0C

Si 57 < 0, c’est-a-dire que la concentration diminue vers ’aval (cas de ’élément qui se propage dans un

milieu propre, propagation du front de la migration), ce flux résultant ¢, sera toujours positif, c’est-a-dire
que convection et dispersion font se propager ’élément vers ’aval. La dispersivité a; joue donc bien son
role d’accélérateur de la propagation par le jeu de ’hétérogénéité des vitesses.

. .oC . . - . .
Mais si ¥ > 0, qui est le cas du balayage par un fluide propre d’un milieu contaminé, alors I'importance

. oc , . . . . C L
relative de aLE-[ et C détermine le signe de ¢,: pour de forts gradients et de fortes dispersivités, ¢, peut

devenir négatif, ce qui signifie que les éléments transportés se mettent & remonter le courant et & cheminer
vers I’amont: on voit mal, physiquement, comment la dispersion cinématique, qui est somme toute une
hétérogénéité des vitesses réelles par rapport a la vitesse convective, pourrait propager des éléments vers
Pamont: les vitesses réelles dans le milieu poreux sont vraisemblablement toujours plus orientées vers 1’aval
que vers I’amont. Le seul mécanisme physique que ’on pourrait mettre en avant pour expliquer une remontée
des éléments transportés dans le courant serait la diffusion moléculaire, qui s’écrirait alors:

oC
¢¢ = —wd—aY + CU

ce qui ferait dépendre la valeur du coefficient de dispersion du sens du gradient par rapport a la vitesse.

Cet effet est atténué si I'on fait dépendre le coefficient de dispersion de la distance parcourue (Dieulin,
1980).

b) Milieu fissuré

Il n’y a pas, pour le milieu fissuré, de théorie particuliére élaborée pour le transport. Les trois
phénomeénes (convection, diffusion, dispersion) cités plus haut jouent également en milieu fissuré, ou le
phénoméne de la porosité secondaire éventuelle des blocs prend une importance toute particuliére si elle
existe.

- Convection:

La convection dans le réseau des fissures aura lieu exactement comme dans les milieux poreux. Utilisant
la vitesse de Darcy, on écrira:

ocC

— di V) =w 2
v(CU)=w 5
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pour identifier la convection.

Si I’on compare un milieu poreux de perméabilité 10=3 m/s et de porosité 0,20 a un milieu fissuré ayant
la méme perméabilité équivalente, il suffit d’une fissure de 0,02 mm avec un espacement de 1 m pour obtenir
le méme flux de Darcy, ce qui donne une porosité du milieu fissuré de 2.10-%: la porosité cinématique wy
est dix mille fois plus petite dans le milieu fissuré, ou, si I'on veut, la vitesse microscopique moyenne dans la
fissure est dix mille fois plus élevée que dans le milieu poreux ayant globalement la méme perméabilité.

Le transfert convectif sera donc beaucoup plus rapide en milieu fissuré qu’en milieu poreux si la matrice
de la roche est imperméable, non poreuse et compacte.

- Diffusion et dispersion:

Ces deux phénoménes prendront également naissance dans les milieux fissurés, le premier par P’agitation
moléculaire, le second par I’hétérogénéité des vitesses au sein d’une fissure (profil parabolique des vitesses,
comme dans un pore) ainsi que I’hétérogénéité des vitesses de fissure a fissure (degré d’ouverture différent)
et enfin, mélange et dispersion transversale par rencontre de fissures de directions différentes.

Il y a cependant trés peu de valeurs connues des coefficients de dispersion en milieu fissuré. Un des rares
cas connus est celui des basaltes de Hanford, ot un rejet accidentel de tritium a pollué la nappe sur pres de
15 km. Une étude, réalisée par Ahlstrom et autres (Batelle) donne:

ar =30m
ar =20 m

Une autre étude de pollution par des déchets radioactifs a été réalisée par Robertson en 1974 (cité par
Fried, 1975) 4 la station expérimentale de Snake River (Idaho). L’aquifére est constitué de basaltes fissurés
et de couches de sédiments intercalaires. Le calage du modeéle (sur des concentrations en chlorures et en
tritium) a été obtenu pour des coefficients:

ar = 91m

ar =137 m (noter ar > ar)

les polluants s’étant étalés sur prés de 10 km en 10 ans.

Grove cite une expérience de tracage au tritium dans 150 m d’épaisseur de roches fissurées. Avec un
puits d’observation a 600 m du point de tragage, il obtient un o de 150 m et une porosité de 8.10™%. Pour
ces calcaires fissurés, il cite af = 12 m.

- Porosité secondaire:

Nous entendons par la le cas ol la matrice de la roche qui est découpée par des fissures ne peut étre
considérée comme imperméable et compacte: des éléments transportés vont y migrer.

Reprenant le raisonnement que nous avions fait pour le milieu poreux, nous pouvons écrire 1’équation
de transport en faisant intervenir deux concentrations C et C':

pa— /
div (Egﬁﬁc - CU) = wcf—)g + (w— wc)-a£
ot ot
w. correspond ici a la porosité cinématique des fissures, soit, pour fixer les idées, 80 a 90% du volume
de celles-ci;
w —w, correspond i la porosité de I'eau immobile dans les fissures et I’eau contenue dans la matrice;

C correspond alors a la concentration du fluide dans les fissures;
C' correspond a une concentration “moyenne” dans la matrice.

Eliminons le cas trivial ol la migration des fissures a la matrice est si rapide, ou le milieu si finement
fissuré, que I'on peut, a chaque instant, supposer que la concentration C’ dans chaque bloc de matrice est
égale & celle du fluide circulant dans les fissures. Ce cas extréme correspondrait, comme nous I’avons vu
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pour le milieu poreux, & utiliser une porosité pour le transport qui soit égale & la porosité totale (fraction
mobile dans les fissures + fraction immobile + porosité totale de la matrice) de la roche.

1€T€ hypothése: matrice rocheuse, mais @ perméabilité quasi-nulle: Dans ce cas, le seul mécanisme de
migration dans la matrice sera la diffusion moléculaire. Dans chaque bloc isolé par des fissures, nous aurons
a résoudre I’équation de la diffusion moléculaire:

—— /
div (w'dgradC’) = w’a—act;

W’ étant la porosité totale de la matrice. Cette équation aura pour conditions aux limites les valeurs de la
concentration C dans les fissures, elle-méme variable avec le temps. On calculera alors le flux moyen échangé
avec la fissure par unité de surface de contact entre les deux milieux:

g 13T
¢=—w'dgradC
sur le contact
terme que l’on introduit comme terme source dans ’équation du transport dans les fissures:

div(DgradC - CU) = wc%g- +ad

aire des plans de fissures présents

étant le rapport —
e PP volume de milieu

(une fissure compte pour deux surfaces par ses deux plans).
Pour simplifier ces calculs, on résoudra schématiquement 1’équation de diffusion dans un bloc en la

ramenant & une dimension, en donnant au bloc une demi-dimension moyenne égale au demi-espacement
moyen des fissures dans toutes les directions de ’espace, mais respectant le volume de la matrice:

1
TX‘ (& défini ci-dessus)

L’équation monodimensionnelle de la diffusion, avec une condition de flux nul & la distance L et de
concentration imposée au plan de fractures, sera résolue soit numériquement, soit analytiquement (donnant
alors & ¢ une forme d’intégrale de convolution de la concentration C avec la solution analytique). Compte
tenu de la complexité ainsi introduite, un tel calcul n’est envisageable qu’a une dimension, peut-étre deux.
Une solution sphérique peut également étre envisagée.

26ME€ hypothése: malrice poreuse el perméable: Notons tout de suite que si cette perméabilité est de I’ordre
de celle des fissures, le milieu fissuré aura une perméabilité équivalente tenant compte explicitement de la
perméabilité de la matrice qui existe dans les expressions données au § 4.1.1.

Le transport se réalisera simultanément dans les deux milieux, et pourra étre représenté par un coefficient
de dispersion plus élevé, tenant compte de cette hétérogénéité systématique du champ de vitesses (il faudra
déterminer ce coefficient par I’expérience).

Le probléme plus difficile est le cas ol cette perméabilité de la matrice, sans étre nulle ou négligeable,
est faible devant celle des fractures. On peut alors proposer (O’Neill et Pinder, 1977; Lefebvre du Prey,
1974) de résoudre une seule équation d’écoulement en charge en supposant qu’en régime permanent il y a
égalité des pressions dans les deux milieux, en utilisant la perméabilité équivalente globale:
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- d’en déduire deux champs de vitesses, dans chacun des milieux, en appliquant la loi de Darcy dans chaque
milieu avec sa perméabilité propre (on suppose que les deux milieux sont continus et Superposés);

- d’écrire deux équations de transport dans chacun des milieux, avec la vitesse de Darcy et la porosité
qui leurs sont propres;

- de coupler ces deux équations de transport au niveau de termes d’échange:

un terme d’échange convectif lié & la vitesse de Darcy dans la matrice; si C est la concentration
dans les fractures, et C’ dans la matrice, le terme sera:

—-alU'C dans I’équation du transport C’
+alU'C’ dans P’équation du transport de C

o étant un coefficient d’échange;
un terme d’échange dispersif lié a la différence des concentrations C et C'.

9.2.2. Lois des interactions entre phase immobile et éléments transportés et modifications
physico-chimiques des éléments.

Notre objet est ici d’introduire les mécanismes qui peuvent rendre la migration des éléments dans les
roches un phénoméne non conservatif, c’est-a-dire tendre au non respect de la loi de conservation de la

matiére au cours du transport. Nous traiterons successivement du cas des milieux poreux et des milieux
fissurés.

a) Milieu poreux

La phase immobile comprend essentiellement la phase solide, mais également le liquide immobile lié au
solide par les forces d’attraction moléculaire, et c’est dans cet esprit que nous avons renvoyé le lecteur au
présent paragraphe pour traiter de cette interaction.

Plusieurs mécanismes sont communément cités dans 1’étude de la migration des éléments (Jackson,

1981):

e Mécanisme physique:

La filtration des éléments par les pores du milieu: Greenberg et Mitchell donnent, dans Dargile, les
estimations suivantes: ‘

— diametre des particules d’argiles: 20.000 A (;\ = Angstrom = 1071% m), et parfois bien plus faible;

— espacement des lits des minéraux argileux: 10 A;

— dimension des plus petits ions solubles, tels que Na* et CI7: 12410 A en diamétre;

— dimension des grandes molécules organiques de poids moléculaire élevé: chaine de polyéthylene glycol
de poids 20.000 et de longueur jusqu’a 500 A.

On peut donc admettre que la filtration physique par les minéraux argileux ne peut jouer que pour les
trés gros ions, et surtout pour les molécules de complexes formées par la réunion de plusieurs ions.

Certains colloides peuvent <ependant étre retenus, en quelque sorte, par sédimentation dans le milieu,
méme si leur diamétre est inférieur a celui des pores.

eMécanismes géochimiques:

complexation des ions pour former des molécules électriquement neutres;

- réaction acide/base en fonction du pH de la solution et des roches traversées;

- réaction d’oxydation-réduction qui conditionne I’état de valence des ions transportés;
précipitation-dissolution pouvant immobiliser ou mettre en solution des éléments;
adsorption-désorption limitée par définition, sensu stricto, aux seuls échanges ioniques (cations tres
principalement) ayant lieu sur la surface des minéraux argileux ou colloidaux.

eMécanismes radiologiques:
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Un ordre de grandeur de la capacité d’adsorption maximum des minéraux argileux est environ 1/10 de
leur poids.

167 cas: la cinétique de I’adsorption est instantanée.

On admet alors que F et C sont toujours en équilibre et reliés par une relation ou le temps n’intervient
pas. Les expériences menées jusqu'ici & l'adsorption (pas encore a la désorption) semblent montrer que,
pour les corps et les minéraux argileux, le temps d’obtention de I’équilibre est, a quelques pour cent pres, de
quelques minutes, c’est-a-dire effectivement négligeable pour les problemes courant.

Dans le cas général, il faut prendre en considération l’ensemble des éléments transportés et calculer les
concentrations C; et F; de chacun d’eux. On écrit donc I’équation du transport habituelle:

L Em— — 0C; OF;
div (Dgrad C; — C; U) =W +(1 ——w)p,—é—t—

Ensuite, on exprime que la somme des concentrations adsorbées est égale a la capacité totale d’échange
de la roche:

M
ZF,- = Fr M = nombre d’éléments présents
1

Enfin, on exprime la sélectivité de I’adsorption pour certains éléments par une relation, supposée in-
stantanée et réversible (c’est-a-dire en particulier qui ne représente pas la fixation irréversible):
F G _
ol K} est le coefficient d’adsorption sélective des éléments 7 et ). Les coefficients K] ne sont, bien siir, pas
indépendants entre eux.

On peut alors résoudre le systéme d’équations ainsi formé.

Dans le cas ou certains des éléments transportés sont en trés faible concentration, on fait ’hypothese
que I’adsorption de ces éléments ne modifie pas sensiblement le rapport F;/C; des autres éléments présents
en quantité notable. Ce rapport étant constant, il vient:

F )
= K} 6"- = constante = Ky,

5

Le coefficient K4, est appelé coefficient de distribution de I'élément i par rapport au milieu poreux. Il
suppose que I’adsorption est linéaire, réversible et instantanée. Comme K4 peut varier avec la température,
on I’appelle aussi la pente de I'isotherme d’adsorption. Sa dimension est [L3M 1], on 'exprime généralement
en ml/g. Il vient alors:

Fy = Kq,C;
. — — —_— » 8C| 1 -_— ., 60'
div (Dgrad Ci = C;T) = [w+ (1 —w)ps Ka) T2 = w[l + —=p,Ka)) == (9.2.2.2)
ot w ot
On appelle généralement le terme:
l—w . .
R=1+——p,A,, sans dimension (9.2.2.3)
w

le “coefficient de retard” di & l’adsorption. Il s’introduit donc comme un coefficient multiplicateur de la
porosité, qui modifie la vitesse apparente du déplacement:
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— décroissance radioactive (disparition d’éléments);
~ filiation entrainée par cette décroissance (apparition d’éléments nouveaux).

L’ensemble de ces mécanismes se traduit par un “terme source” dans 1’équation du transport, traduisant
la non-conservation de la matiére lorsque I’on fait le bilan des flux entrants et accumulés dans un volume D,
comme nous ’avons vu au paragraphe 9.2.1. Nous I’écrirons:

div (DgradC - CT) =u%f— +Q (9.2.2.1)
Le terme source, @, d’apres la fagon dont a été établi le bilan dans un volume D, représente:
- une disparition d’éléments s’il est positif,
- un apport d’éléments s’il est négatif,
- il s’exprime en masse de I’élément considéré, amené (ou supprimé) par par unilé de volume de
milieu poreuz et par unité de temps.

Nous allons tenter de passer en revue les lois actuellement connues pouvant permettre d’estimer ce terme
source:

. filtration = on ne la distingue pas de I’adsorption-désorption - voir ci-dessus;

. réactions géochimiques = si les lois d’équilibre chimique de I’ensemble des éléments transportés en présence
des éléments de la roche sont connues, on peut estimer ces termes. Ce travail est cependant trés complexe,
et reléve de ’analyse géochimique fine de la solution et du milieu.

Dans le cas qui nous intéresse, on fera I’hypothése que I'équilibre chimique se réalise instantanément
dans le milieu, vu la lenteur des écoulements. Voir les travaux de Michard a Paris VII, de Tardy a Toulouse
ou de Helgeson a Berkeley.

. adsorption et filtration = la fixation d’éléments en solution sur les particules minérales conduit a définir
une quantité d’éléments liés a la phase solide. On utilise généralement une concentration massique F,
représentant la masse d’éléments adsorbés par unité de masse du solide. A un instant donné, dans I'unité
de volume de milieu poreux, la masse de solide est (1 —w)p, (ou p, = masse volumique du solide et w est la
porosité totale), et la masse d’éléments liés au solide est donc (1 —w)p, F.

Le terme source a introduire dans I’équation sera la variation de cette masse par unité de volume dans
I’'unité de temps:

Q=(1-w)p 5

Le probléme de ’adsorption est de préciser la relation existant entre les concentrations F et C.

i) Mécanismes d'échanges d'ions

La capacité d’adsorption de certains minéraux ou colloides est due (Jackson, 1981) & Dexistence de
charges électriques non neutralisées a la surface et/ou a P'intérieur de ces minéraux. Des ions de charge

opposée viennent alors s’y fixer, créant une “double couche électrique” qui peut appartenir & 'un des deux
types suivants:

Type 1. présence d’imperfections ou de substitutions dans le réseau cristallin du minéral, engendrant des
déséquilibres électriques positifs ou négatifs. On appelle alors la couche électrique fixe la surface du minéral,
et la couche électrique mobile les ions de charge opposée attirés par la couche fixe.

Type 2: I'adsorption spécifique de certains ions par un minéral initialement non chargé a sa surface crée une
couche électrique fixe, sur laquelle viennent se fixer d’autres ions de charge opposée, constituant la couche
mobile.

La vermiculite et la montmorillonite ont, par exemple, des doubles couches de type 1. D’autres argiles,
les hydroxydes métalliques et les colloides organiques et inorganiques (silice par exemple) ont des doubles
couches de type 2. Ces derniers sont bien plus sensibles 4 ’action du pH de I’eau.
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div (D grad C = CU) = wR%—f (9.2.2.4)

Sous cette hypothése, on peut calculer le déplacement de chaque élément indépendamment de ses voisins.
S’il n’y a pas d’adsorption, R = 1.
g¢me g5 adsorption instantanée non entiérement réversible

Si un tel phénomene se manifeste, on obtient des isothermes d’adsorption-désorption ayant, par exemple,
I’allure suivante:

F
désor ptiol '
1
1
Fir ["ad o 1
so‘Q :
%6 1
!
) i
< ,

Cmax

la quantité fixée de fagon irréversible pouvant alors dépendre de la concentration maximum atteinte Cmax.

La représentation de ce phénoméne peut étre envisagée sur modéle numérique, au prix d’un effort de
calcul assez considérable. On comparera en effet, & chaque pas de temps, et pour chaque maille du modele,

la concentration nouvelle calculée Ci4a¢, & 'ancienne concentration C;. Supposons, par exemple, que I'on
commence par une phase d’adsorption:

Si Ciyar > Gy
alors il faut utiliser, pour la maille considérée, le coefficient de retard:
1 —-w :
Ri=14 —p,Kq,
w
Kg4, étant la pente de 'isotherme d’adsorption. Mais si:

Cirar < G

alors il faut utiliser:
1-—
Ra=1+ ’—waaKdd

K44 étant la pente de I'isotherme de désorption.

On peut noter que le terme constant F;,. s’élimine lors de la dérivation (en désorption, on écrirait
. OF ocC . . , .
F = F;; + K44C, mais o = Kddgt—), ce qui montre que seule la pente de I'isotherme de désorption est
importante a déterminer, dans la mesure ol les diverses isothermes de désorption sont bien, en premiére
approximation au moins, des paralléles entre elles, en fonction de la concentration maximale atteinte:
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—e C

Il faut aussi noter que le danger d’utiliser cette irréversibilité vient de ce qu’elle peut étre due a une
cinétique de désorption. Il se peut que, pour un temps d’équilibre tres long, on revienne lentement a
Iisotherme unique d’adsorption. Si I’on utilise, pour les calculs, une désorption irréversible, on risque donc
de commettre une erreur qui va a 'encontre de la sécurité: on pose la le probleme de la validité a trés long
terme des expériences faisant intervenir une cinétique de réaction et mesurées en laboratoire sur des durées
nécessairement faibles.

3€™Me€ cgs: isotherme d’adsorption non linéaire

Dans le cas ot chaque élément se déplace en solution indépendamment de ses voisins, on a proposé
d’autres relations instantanées entre F et C, au lieu de I'isotherme linéaire. ce sont les isothermes:

- du2®Medegré: F=KiC—K,C? , Ky, Ka>0
- de Langmuir:  F = {35 , Ky, Ky>0
- de Freundlich: F = K,C!Y/» , K;>0n>1
- exponentielle: C = K FeX?F , K\,Ky20

De plus, ces constantes peuvent dépendre du sens de I’échange (adsorption ou désorption) si le phénomeéne
n’est pas strictement réversible.

4€™¢€ cas: cinétique d’adsorption-désorption non instantanée

1l faut alors connaitre la loi de variation dans le temps de F en fonction de C. Devant la complexité du
probléme, on découple généralement le phénoméne numériquement:

- connaissant C; et F; au début du pas de temps, on calcule Fi4a; & la fin du pas de temps, d’aprés la
loi de la cinétique de réaction, en supposant C; constant sur le pas de temps:

_ Fiyar— Fy
Q"(l w)ps At

- on introduira alors ce terme source, supposé constant sur le pas de temps, dans I’équation du transport.

La concentration F est, en quelque sorte, un terme explicite en retard d’un pas de temps sur la concen-
tration C.

Si I’on veut améliorer la précision, il faut alors calculer plusieurs fois C et F sur le méme pas de temps,
en itérant les calculs de cinétique et de transport.

Par exemple, on peut supposer que la cinétique d’adsorption est linéaire (Kipp, 1978). On écrit alors:

div (fﬁic - Cﬁ) = w%f— +(1- w)p,%?— (dans la phase liquide)
oF _ W(Kq.C - F) (dans la phase solide)

ot~
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W est la constante de cinétique chimique linéaire de ’adsorption. On résout successivement ces deux
équations.

5¢Me (- relation entre 1'adsorption et la concentration C’ dans la fraction fluide immobile

Nous avons écrit au § 9.2.1.a. une équation de transport (9.2.1.4) faisant intervenir une concentration
C’' dans la fraction immobile. Nous pouvons également y ajouter un terme d’adsorption. Il vient:

.= — oc ocC’ oF
div (DgradC-CU) =wemr +(w—wc)—aT +(1 —w)p,—aT

Si I'on admet qu’il existe une isotherme d’adsorption linéaire F = K4C, et que la relation entre C et C'
est également linéaire:

C'=K'C

il vient: ) 5C
ik Ry ) it
w ot

¢ 4

div (Dgrad C = CT) = we(1 +

On fait ainsi apparaitre un nouveau coefficient de retard, ot 1’adsorption et la rétention dans la phase
fluide immobile sont réunies.

Or, dans la pratique, on mesure le coefficient I’y par différence: partant d’une concentration C, connue
dans la phase fluide, on y introduit un certain poids de roche*, puis on mesure la concentration C, dans
la phase liquide restante: la quantité adsorbée en est déduite par différence. Mais, en fait, la quantité qui
a disparu de la phase mobile (que seule on peut mesurer) comprend également la quantité retenue dans le
liquide immobile lié au solide: le coefficient K’y obtenu tient donc explicitement globalement compte de la
quantité retenue dans le fluide immobile, et, dés lors que 1'on introduit ’adsorption linéaire et instantanée,
il est inutile de prendre en compte la concentration C’ dans la phase immobile.

ii) Décroissance radioactive:
En Pabsence de transport, la décroissance radioactive s’exprime par 1’équation différentielle:

ocC
i -AC

qui, intégrée, donne:
C=C, e (décroissance exponentielle)

La période T est définie par C/C, = 1/2, ce qui donne:

Log2 0,693

- AT 3

=1/2 A= = — 9.2.2.5

e / ou T T ( )
La décroissance radioactive fait donc “disparaitre”, par unité de temps, la masse AC par unité de volume

de la phase liquide. Pour la ramener a I'unité de volume du milieu poreux, il faut donc la multiplier par w.

L’équation du transport s’écrira:

div (DgradC - CU) = w (% + AC) (9.2.2.6)
S’il existe une concentration F dans la phase adsorbée, celle-ci va également décroitre selon la méme loi:
oF
T —\F

* qu’il ne faut surtout pas broyer, pour ne pas augmenter la surface de contact fluide-solide.
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Cette disparition est ici exprimée en masse par unité de temps et par unité de masse de solide. Pour la
ramener & 1’unité de volume de milieu poreux, il faut la multiplier par (1 — w)p,. On écrira donc:

div(DgradC-CT) =w (%-f— + AC) +(1-w)p, (%—f + /\F> (9.2.2.7)
Dans le cas d’adsorption linéaire et réversible (F' = K4C), ceci s’écrit:
div (DgradC - CTU) = uR%?— +WwRAC (9.2.2.8)

iii) Filiation:

Si un élément C; disparait par décroissance radioactive, c’est qu’il engendre par filiation un élément

C; différent*. Pour I’équation du transport de ’élément Cj, le terme source sera donc une apparition. On
écrira:

. =— - 0C; M;
div (DgradC; — C;U) = w—a—t-’- —wAi—]\—fl,'Ci

=L ¢tant le rapport des masses des éléments 7 et j si elles sont différentes. On généralise facilement au cas
" .
de I’adsorption.

L’équation du transport de j doit donc étre résolue apres celle de i, le probleme étant celui de la
concordance des pas de temps de calcul pour les deux éléments.

b) Milieu fissuré

L’ensemble des phénomenes qui ont été cités pour les milieux poreux peut intervenir de la méme fagon
pour les milieux fissurés.

Le seul point qu’il y ait lieu de distinguer ici est le cas de I'adsorption dans le plan des fractures, quand
la matrice rocheuse est supposée imperméable et non poreuse, c’est-a-dire ol les éléments transportés ne
pénétrent pas en pratique.

1l faut alors déterminer expérimentalement un coefficient de distribution ramené a I’'unité de surface
brute de la fissure. En effet, on peut définir conceptuellement une “concentration” W adsorbée par la
fracture exprimée en masse d’élément retenu par unité de surface de fracture.

Pour ramener cette quantité W d’éléments adsorbée & I'unité du terme source qui est, par définition,
la variation de masse de I’élément par unité de volume de milieu fissuré équivalent et par unité de temps, il
faut multiplier W par le rapport a que nous avons déja défini:

__Aire des plans de fissure présents

volume du milieu

(Notez que nous avons défini o en comptant une fissure pour les deux plans de ses lévres.)

1l vient alors, pour le terme source d’adsorption:

ow
Q=a ot

Si I’on admet qu'il existe encore une relation linéaire entre cette concentration W et la concentration C
dans la solution:

* Dans ce qui suivra, Cj pourra étre le petit-fils de C; par le jeu de plusieurs réactions nucléaires si les périodes des
éléments intermédiaires sont trés courtes par rapport a celle de Cj, et qu’en pratique, seuls C; et C; se trouvent en
présence.
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W =K,C
ol K,, coefficient de distribution de fracture, a la dimension de I’'unité de longueur (volume/surface).

L’équation de transport s’écrit:

L — o aKy\ 6C
dlv(DgradC—CU)_w<w )—é—t—
avec le “coefficient de retard”:
Ka . .
R=1+ %—— (sans dimension)

Pour mesurer expérimentalement K, sur une carotte contenant une fracture, on opérera comme pour le
milieu poreux, par différence, mais en rapportant la quantité W fixée sur les plans de fissures a la surface de
la fissure (c’est-a-dire deux fois la dimension de celle-ci si les deux faces de la fissure sont mises en contact
avec la solution).

9.2.3. Solutions analytiques de I’équation de la dispersion

a) Si 'on se place dans un cas monodimensionnel en étudiant le déplacement d’un polluant dans un
milieu semi-infini, on connait une solution analytique de 1'équation de la dispersion, avec les conditions
initiales et aux limites suivantes:

- C(x)=0Vr>0,t=0

- Co)=C,,t >0
- hypothése du traceur, vitesse T constante pour 'écoulement directionnel
- coefficient de dispersion D = a U'| constant (dispersion longitudinale seule dans ce probleme & une
dimension).
C=0aC,
a t=0
. a*C oC ocC
Equation: D—afz—z— - U?);- = wR—& (9.2.3.1)

Cette équation est a une dimension identique & (9.2.1.50u 7)si R =1, 0u 4 (9.2.2.4.) s’il y a adsorption.
R est alors le “coefficient de retard” (9.2.2.3).

C - Lot Uz z+ ot
Solution: C(z,t) = == |erfe | —=2E— | + ex (-——) erfc | ——=2f 9.2.3.2
=0=7 [ (2,/1):/@1) P\D 2Diwr)| 2P
ou erfc est la fonction d’erreur complémentaire (voir § 8.5.)

exp est la fonction exponentielle.

Pour z donné, au bout d’un certain temps, le second terme devient négligeable devant le premier, et
Pexpression s’écrit:

- Uy +00 U
C(z,t) = % erfc ( IR G, / e~ dr ol v= E-urt

2/DijwR) VI ~ 2 /DijwR

La solution (9.2.3.2) est représentée sur la P1.10 en fonction des trois parameétres adimensionnels:
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= — en abscisse
wRz
c/c, en ordonnée
D R
=7, parametres des courbes
z

b) Si I'on rajoute la décroissance radioactive (équation 9.2.2.6 ou 8), on obtient (Bear, 1979):
9?C oC oC
A coefficient de décroissance exponentielle {9.2.2.5) et R coefficient de retard di & I’adsorption (9.2.2.3).

Solution:

2D 2/DtjJuR

EEA (Z)"+ 22
+ exp (Bz) erfc QW

N TR
Clz.t) = % exp (E) {exp (—Bz) erfc (x 1V (r) + wAH )

. U\ MR
ou 8= (55) +—5— (9.2.3.4)

¢) Si 'on injecte une masse dM de traceur de fagon instantanée et ponctuelle dans un aquifére en
écoulement paralléle & deux dimensions, z étant la direction de I'écoulement et I'origine des coordonnées au
point d’injection, on obtient (Bear, 1979):

9:C 8:C ile oC

Dy a2 T Dy 5y% Ug; = “’Rg (9.2.3.5)
Solution:
dM Jed ¢ - Ut? y?
d t)y= - wR 2.3
C(z,y,1) DD T exp ( 1Dri/wk ~ iDptjoR (9.2.3.6)

ot D et Dt sont les coefficients de dispersion longitudinale et transversale, et R le coefficient de retard
(9.2.2.3).

Si Vinjection 3 'origine est continue {débit de fluide @ & la concentration C,, @ étant toutefois suffi-
samment petit pour que 'écoulement ne soit pas perturbé), on obtient la solution par convolution:

C,Q/w> | (’”‘ﬂeﬁﬂ)z y?

C(I’y’t):4n,/—_——DLDT/w2R2 L, t—1 P | TaD,(t—7)JwR  4Dr(t-71)JwR

dr

Si on fait tendre ¢ vers I'infini, on obtient:

_ C.Q/w> Uy U? z? y?
) = o B et P (2DL) Ke (\[wLwR (DL/wR ¥ DT/wR))
olt K, est la fonction de Bessel modifiée de 26Me espéce et d’ordre zéro.
(R ) 62 b Az Cﬂfb’u" /C/kac/:c‘ /(/V)q,{LLe'
Aepasson dx Blagucting
LFOM,QS _RAL CUTAM 2/t




180 Transport de masse et d’énergie en milieu poreux

9.3. TRANSFERT DE CHALEUR EN MILIEU POREUX

A premiére vue, le transport de chaleur en milieu poreux doit obéir a trois mécanismes distincts:
- conduction dans la matrice solide,
- transport par la phase fluide,
- échange de chaleur entre les deux phases, en fonction de leur différence de température.

Le premier phénomeéne se traduirait par une équation de la chaleur portant sur la température moyenne
< 8, > du solide. Le second serait semblable a I’équation de la dispersion pour le fluide, la température
du fluide < 8 > jouant le role de la concentration. Le troisieme s’apparenterait aux mécanismes d’échanges
entre phase solide et liquide que nous avons examinés.

Dans la pratique, cependant, sauf dans de rares exceptions, on fait I’hypothése que la température du
solide et celle du fluide s’égalisent presque instantanément, et qu’il n’existe qu’une seule température 6 dans
le milieu poreux. Houpeurt et al. (1965) ont montré en effet que cette égalisation des températures s’effectue

en moins d’une minute, pour un milieu de granulométrie inférieure 2 1 mm, ou en moins de 2 heures pour
10 cm.

Tout ce que nous venons de dire pour le transport d’un élément en solution se transpose alors au
transport de la chaleur en milieu poreux.

On calcule donc une température unique pour le milieu poreux, le transport se traduisant par:
- un phénomeéne de convection, analogue a celui des éléments en solution,
— un phénoméne analogue a la dispersion en milieu poreux:
- la conduction pure dans les deux phases solide + liquide remplace la diffusion moléculaire,
- I’hétérogénéité de la vitesse réelle engendre une “conductivité fictive” anisotrope équivalente a la
dispersion cinématique, que I’expérience montre étre également une fonction linéaire du module de
la vitesse (Ledoux, 1977; Sauty, 1978).

La conservation de la chaleur permet directement d’écrire:

o6’ | 00

. - 08 -
d1v(AgradB—pCUG)—prgt-+(1—w)pC 5 =" C %

avec: X: tenseur de conductivité équivalente,
0: température,
pC: masse volumique et chaleur spécifique de I'eau,
p'C’: masse volumique et chaleur spécifique du solide dont la température 6’ = 6,
p”C”: masse volumique et chaleur spécifique du milieu poreux (eau+solide):
pP'C” =wpC+ (1 -w)p'C’
w: porosité totale.

Le tenseur de conductivité équivalente X regroupe la conductivité isotrope du milieu poreux (eau+solide)
en ’absence d’écoulement, A,, et un terme de macrodispersivité lié a ’hétérogénéité de la vitesse, fonction
linéaire de cette vitesse. Nous proposons d’utiliser la vitesse de Darcy U, multipliée par la capacité calorifique
volumique de I’eau, pC, pour que le coefficient de proportionnalité ait la dimension d’une longueur, comme

pour la macrodispersivité en dispersion. Dans les axes longitudinaux et transversaux liés a la vitesse, on
aura:

AL = o+ BLpC|T |

77
Ar = Ao + BrpClU |
On peut tenter de ramener cette équation ainsi que celle de la dispersion & des formes comparables,
pour rechercher les similitudes des coefficients de dispersivité. On utilisera pour cela des températures ou
des concentrations réduites de la forme:
C - Chin
Cmax = Cip
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On peut se référer pour cela soit a la vitesse de Darcy, soit a la vitesse d’avancée du front (thermique
ou chimique), avec d’ailleurs les mémes résultats pour la comparaison des dispersivités:

- par rapport d la vitesse de Darcy:

traceur: div (D grad C)— div (UC) = u-a—f , avec D=wd+a|U]|
(3 T T o =
chaleur:  div (p—C grad 9) — div(U#) = —C o avec = +B8|U|
- par rapport d la vitesse d’avancée du front convectif:
div (D' grad C) — div (#*C) = %?‘ . avec D =d+ 3|
X 0 X Ao =
div (—pTC-,—;grad C) — div (2¥'C) = —aa—t— , avec o = 7 + Bl
dans laquelle la vitesse du front moyen de traceur et de chaleur est:
LU ., pCU
= — t = —
w e u p”c,?

On voit qu’il faudra comparer dans les deux cas la dispersivité du traceur, a, a la dispersivité 3 de la
chaleur, qui s’expriment toutes deux en unités de longueur. Nous allons tenter de le faire sur un méme site
expérimental.

Sous I’égide du CNRS, puis de la DGRST, des expériences de tragage chimique, puis thermique, ont été
conduites sur une méme parcelle, 3 Bonnaud dans le Jura, par une équipe réunissant le BRGM, le CENG,
puis le BURGEAP et I'Ecole des Mines. La nappe est constituée de sables et de graviers relativement
homogenes, de 3 m d’épaisseur. Elle est captive, de transmissivité de I'ordre de 1073 m?/s, et de coefficient
d’emmagasinement compris entre 1072 et 1074,

Les valeurs des principales dispersivités obtenues (Peaudecerf et al., 1975; Ledoux et al., 1977; Sauty,
1978, 1979), calculées par calage de modeles, sont rassemblées dans le tableau de la page suivante. Ces
résultats semblent montrer que les dispersivités pour la chaleur ou pour le traceur sont comparables, méme
si la conductivité en ’absence d’écoulement est environ 400 4 1.000 fois plus forte que la diffusion moléculaire.

Ceci semble contraire aux premiers travaux réalisés en laboratoire sur une telle comparaison: Green
(1963, cité par Bear en 1972) indique que I’équivalence entre les dispersivités thermique et chimique est vraie
pour des nombres de Péclet de I’ordre de 10.000, et qu’en dessous de 3.000, la dispersivité thermique est
négligeable.

Or, les nombres de Péclet, tant chimiques que thermiques, dans les expériences de Bonnaud, sont au
plus de 'ordre de quelques dizaines:

u
Pe traceur = —

avec: u (vitesse moyenne de pore) = 0,09 m/h
{ (diameétre moyen des grains) = 2 mm,
d (coefficient de diffusion moléculaire) = 1,0.107° m?/s en milieu poreux,
Pe = 50,

ot U¢

Xe/P"C” " Xo/pC

avec: U (vitesse de Darcy, au rayon moyen de 6 m) = 0.03 m/h,
¢ (diamétre moyen des grains) = 2 mm,
Xo/pC = 2.1077 m?/s,
Pe = 0,1.

Pe thermique =

1l semble donc, comme le remarque Sauty (1978) que sur le terrain, a ’échelle considérée, la macrodis-
persivité due a I'hétérogénéité de la vitesse dans les différentes strates de la formation, domine nettement sur
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la diffusion moléculaire ou méme la conduction, et rende donc comparables les dispersivités obtenues pour
I’'un et ’autre traceur.

Mais 4 une échelle plus grande, sur un tragage thermique de plus grande longueur et durée, les coefficients
de dispersion et de conduction vont éventuellement atteindre une valeur asymptotique, et la dispersivité du
traceur devrait étre environ b fois plus forte que la dispersivité thermique. On manque cependant d’expérience
pour le confirmer.

Voici quelques valeurs de A, et p'C’ pour différentes roches:

)°. 1073 Kcal/sec.m °C p'C’ du minéral, Kcal/m3°C

Sable sec 0,1 a0,2 450
Sable humide 06 a0.8 450
Argile séche 0,2 40,5 500
Argile humide 0,3 a0, 500
Granite 0,6 40,9 550
Gres 0,35 a 1,02 550
Eau 0,1429 1000
Sel 1.4 475

Notez que pour calculer la capacité calorifique volumique de la roche, il faut tenir compte de I’eau contenue:

pncm — pr+ (l _ w)plcl
avec des porosités de 10 & 20%, p”C” est de 'ordre de 500 a 600 Kcal/m3°C.

Il faut aussi se souvenir qu’on doit coupler, & cette équation de transfert de chaleur, la loi de Darcy

généralisée et 1’équation de continuité en milieu poreux, qui donneront la vitesse T. Ce couplage se fait par
la masse volumique p = p(8) et la viscosité p = pu(6).

Ce couplage par la masse volumique a une conséquence importante: de I’eau chaude injectée dans un
aquifére aura tendance a circuler vers le toit, par effet de densité. Ceci constitue un des problemes du stockage
d’eau chaude dans les nappes. Par ailleurs, méme en régime non perturbé par l'intervention humaine, le
flux de chaleur géothermique, venant du bas, peut créer un écoulement vertical ascendant dans une couche
aquifére. Par continuité cependant, un écoulement descendant doit prendre naissance, si bien que I’on assiste
a la formation de “cellules de convection naturelle” dans I’aquifére.

Bories et Combarnous (1975)* ont étudié ce phénoméne de convection naturelle. Ils ont mis en évidence
qu’en dessous d’un gradient thermique vertical, minimum, la convection n’apparait pas. Quand elle apparait,

* Ils définissent un “nombre de Rayleigh en milieu poreux” par:
ap(pC)k
Rt = (22POE Ao
pA
avec a = coefficient d’expansion thermique volumique du fluide (10=3 & 1074°C)~1; p = masse volumique
du fluide; (pC) = capacité calorifique volumique du fluide, k¥ = perméabilité intrinseque, p = viscosité
dynamique du fluide, A = conductivité équivalente du milieu poreux (immobile); e = épaisseur de la couche;

AO = différence de température entre toit et mur de la couche, supposé imperméable et a température
constante.

La convection naturelle apparait si:

R: Cos v > 4I12

v étant I'inclination sur I'horizontale de la couche.
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des cellules grossierement hexagonales (dans le plan) se mettent en place, dont la taille et la vitesse de
circulation peuvent étre prévues (voir Pl. 11).

Ces phénoménes de circulation naturelle sous gradients thermiques peuvent étre a l'origine de gisements
miniers (gisements hydrothermaux).

Visualisation des lignes de courant, en coupe verticale.
La face supérieure est froide, la plaque inférieure est chaude.

Visualisation de la forme hexagonale
des cellules, vue de dessus.
H est I'épaisseur de la couche poreuse.

P1. 11 - Cellules convectives en milieu poreux.
(d’aprés Bories, 1970
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SOLUTIONS NUMERIQUES
DES EQUATIONS D’ECOULEMENT ET DE TRANSPORT

10.1. Choix d’une technique numérique 10.3.1. Eléments finis linéaires
et d’un code sur des triangles

10.2. Différences finies 10.3.2. Eléments finis linéaires
10.2.1. Approximations des dérivées isoparamétriques avec I’approximation
par différences de Galerkin
10.2.2. Equation de bilan des masses 10.2.3. Eléments d’ordre supérieur
10.2.3. Différences finies intégrées 10.4. Comment résoudre les grands systémes
10.2.4. Différences finies intégrées: 10.4.1. Méthodes directes
cas particuliers 10.4.2. Méthodes itératives
10.2.5. Estimation des transmissivités 10.5. Comment résoudre I’équation de
10.2.6. Différences finies en régime transport
transitoire 10.5.1. Différences finies
10.2.7. Probléme non linéaire 10.5.2. Méthode des caractéristiques
10.2.8. Systémes multicouches 10.5.3. Eléments finis
10.2.9. Systémes tri-dimensionnels 10.5.4. Détermination de la vitesse
10.2.10. Comment représenter les rivieres 10.6. Utilisation d’un modéle
10.2.11. Estimation de I’alimentation 10.6.1. Collecte des données
régionale 10.6.2. Choix des parameétres
10.2.12. Représentation des puits 10.6.3. Calage .

10.3. Eléments finis 10.6.4. Prédiction a ’aide d’un modéle

10.1. CHOIX D’UNE TECHNIQUE NUMERIQUE ET D'UN CODE

On peut se voir obligé d’utiliser une solution numérique des équations de I'écoulement et/ou du transfert
plutét que des solutions analytiques pour une ou plusieurs des raisons suivantes:

1) Le domaine de I’écoulement est délimité par des limites complexes jouant un role pendant le temps qui
intervient dans la solution recherchée. Les solutions analytiques disponibles s’appliquent a des milieux infinis
ou semi-infinis; la méthode des images ne peut étre utilisée, ou bien il devient trop compliqué de représenter
le réle des limites par cette méthode.

2) Le probléme est non linéaire (par exemple, la transmissivité varie avec la charge dans une nappe libre),
et il n’existe pas de solution analytique.

3) Les propriétés du milieu varient dans 'espace, tandis que les solutions analytiques supposent que le
milieu est homogeéne ou que la géométrie des hétérogénéités est trés simple.

4) La géométrie et la grandeur du terme source sont trop complexes pour qu’elles puissent étre représentées
par une source ponctuelle ou une ligne de source, ou une intégrale des deux, suivant un tracé simple.
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5) On peut trouver une solution analytique, mais son expression est si complexe (par exemple, la somme
d’une série infinie, I'intégrale de fonctions complexes) que les calculs numériques de sa valeur demandent beau-
coup plus d’effort (de programmation et de temps CPU) que 'utilisation directe d’une solution numérique
du probléme originel.

Dans certains de ces cas, il peut s’avérer préférable d’employer une méthode semi-analytique, par laquelle
le probléeme est d’abord résolu analytiquement dans le domaine des transformées de Laplace, et la trans-
formée inverse de Laplace est ensuite calculée numériquement. Cette approche peut étre intéressante pour
une équation de transfert comprenant des réactions cinétiques du premier ordre par exemple, a laquelle la
transformation de Laplace convient trés bien (voir Talbot, 1979). Une autre méthode semi-analytique utilise
les fonctions de Green (voir, par exemple, Roach, 1982 et Herrera, 1985).

Dans les cas ol des solutions numériques sont demandées, il faut d’abord décider: 1) quelle méthode
numérique choisir (essentiellement, différences finies, éléments finis, éléments limites), et 2) comment obtenir
un code (le programmer ou obtenir ’accés a un code qui existe déja).

Il n’y a pas de réponse unanimement acceptée a la premiére question; au sujet des trois méthodes
décrites ci-dessus, on peut faire les remarques suivantes:

1) Différences finjes: Cette méthode est facile a comprendre et a programmer. Elle convient trés bien
a la résolution de problémes régionaux d’écoulement des nappes, en une ou deux dimensions, dans des
systémes multicouches ou en trois dimensions. Bien qu’elle soit, en principe, capable de traiter des mailles
de n’importe quelle forme et taille, elle est, en pratique, limitée a des mailles simples: des carrés réguliers,
des carrés gigognes, des rectangles ou des parallélépipédes rectangulaires en trois dimensions. Elle peut trés
bien représenter les hétérogénéités des propriétés du milieu, pourvu que la forme de ces hétérogénéités puisse
étre décrite de facon adéquate par la forme des mailles; dans la pratique, I’anisotropie doit étre limitée aux
directions paralléles aux cotés des mailles. Elle convient moins bien a la résolution de I’équation de transfert

sauf dans les cas ou les méthodes des caractéristiques et du calcul des trajectoires des particules sont utilisées
(voir § 10.5.2.).

2) Eléments finis: Cette méthode est moins facile a expliquer et beaucoup moins facile & programmer
que la précédente. Comme cette approche est plus flexible que celle des différences finies, un programme
d’éléments finis peut étre plus compliqué a utiliser (davantage de données d’entrée, par exemple, sur la
géométrie des mailles, donc plus de possibilités d’erreurs) et peut demander davantage de temps ordinateur.
Cependant, la forme des mailles est beaucoup moins limitée: en pratique, on prend des triangles et des
quadrilatéres en deux dimensions et, en trois dimensions, des tétraedres ou des parallélépipedes de n'importe
quel angle. Ceci permet de décrire d’une maniére beaucoup plus satisfaisante la forme des limites du milieu
ainsi que celle des hétérogénéités ou les fonctions source, ce qui rend également la méthode des éléments
finis idéale pour résoudre les problemes a limites mobiles, par exemple, ceux ayant une surface libre et une
interface abrupte entre eau douce et eau salée ou entre deux fluides immiscibles. Elle est capable de traiter
toutes les directions d’anisotropie, et ces directions peuvent méme changer d’un élément a un autre ou avec
le temps. En pratique, dans les problemes d’écoulement, la méthode des éléments finis peut étre employée
pour des études régionales, mais elle est particuliérement efficace dans les problémes locaux de génie civil
tels que 'exhaure de ’eau d’une excavation, le drainage d’une mine et I’écoulement autour d’un barrage, ou
les formes des limites et des hétérogénéités doivent étre représentées avec précision. Remarquez que quand
il faut calculer les poussées d’écoulement en tant qu’entrée d’un modeéle mécanique, il est souvent nécessaire
de le faire sur le méme réseau que celui utilisé pour les calculs de structure, et presque tous ceux-ci utilisent
des éléments finis. Pour résoudre I’équation de transfert, la méthode des éléments finis est bien supérieure
a celle des différences finies, puisqu’elle peut traiter ’anisotropie du tenseur de dispersion, et que la taille
des mailles peut étre adaptée a la grandeur de la vitesse; on peut ainsi rechercher un compromis entre la
stabilité et la dispersion numérique.

3) Des approches d’éléments aux limites ou d’intégrales de limites ont été proposées récemment pour
résoudre 1’équation d’écoulement. L’avantage principal de celles-ci est que la précision du calcul ne dépend
pas de la taille des éléments utilisés, contrairement a ce qui est le cas pour les méthodes des différences finies
et des éléments finis. Ainsi, on peut se servir de quelques éléments trés grands (ou méme infinis), ce qui rend
la méthode trés efficace du point de vue du temps de calcul. Dans un premier temps, la solution numérique
se calcule uniquement le long des limites des éléments; si ’'on demande en plus explicitement la solution &
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Pintérieur d’un élément, sa valeur est calculée dans un second temps par une intégration numérique dans cet
¢glément. La restriction principale est que les propriétés du milieu, dans un élément donné, sont supposées
constantes: si les hétérogénéités du milieu sont telles qu’il faut inclure un grand nombre d’éléments afin de
les décrire convenablement, alors la méthode de I'intégrale des limites perd de sa supériorité, et 'on peut
aussi bien se servir de celle des différences finies ou de celle des éléments finis. Par conséquent, cette méthode
est beaucoup moins flexible et générale que les précédentes (voir Brebbia, 1978; Liu et Liggett, 1979; Tal et
Dagan, 1983; Herrera, 1984).

La deuxiéme question: comment obtenir un code reléeve plutét du jugement personnel et I'on ne peut
qu’offrir quelques suggestions ici. La programmation d’un code simple de différences finies pour un probleme
en une ou deux dimensions avec des mailles simples (carrés ou rectangles) et des limites simples peut se faire
en quelques jours. Toutefois, ce code ne sera pas facile a utiliser; si I’on veut le rendre d’utilisation aisée
(c’est-a-dire lui donner, par exemple, des données d’entrée simples, une recherche d’erreurs et des messages
d’erreur, des sorties graphiques), cela peut demander quelques mois. Un code plus complexe en différences
finies, multicouches ou & trois dimensions, ayant plusieurs options (par exemple, des non linéarités) peut
exiger de six mois & un an de travail, tout comme un code en éléments finis 2 deux dimensions qui soit
facilement maniable. Un code trés complexe de transfert en éléments finis & trois dimensions peut demander
un effort allant d’un a deux ans, et un modeéle de gisement pétrolier & composantes et phases multiples a trois
dimensions peut représenter un effort de cinq a dix années (ou plus). Il ne faut pas oublier qu’un nouveau
code doit étre soigneusement vérifié et validé a 'aide de solutions analytiques (ou numériques) connues avant
qu’il puisse étre utilisé dans un contexte sérieux. Ces tests risquent d’étre trés longs.

Il existe, cependant, a 'heure actuelle, un grand nombre de codes qui sont disponibles, soit gratuitement,
soit au prix de la reproduction d’un jeu de cartes, d’une bande magnétique ou d’un disque mou, ou meéme au
prix d’une partie des frais de cette reproduction. Pour faciliter I’acces aux codes de ce type, une banque de
codes a été établie (Bachmat et al., 1980)*. Des fichiers informatiques des codes disponibles en modélisation
d’hydrogéologie ont été établis pour ’écoulement, le transfert, la gestion, le traitement des données, etc. ..ol
plus de 500 codes sont décrits. En cherchant dans ces fichiers, on trouvera parmi les codes disponibles ceux
qui sont susceptibles de résoudre au mieux un probleme donné, ceux qui sont adaptés & une calculatrice a
main, & un micro-ordinateur ou & un ordinateur central.

Dans ce qui suit, nous décrirons briévement les méthodes de différences finies et d’éléments finis, com-
ment résoudre de grands systémes linéaires et, enfin, comment utiliser les modéles numériques dans les études
régionales d’écoulement d’eau souterraine. Méme si I'on choisit de se servir d’un code existant pour résoudre
un probléme d’écoulement ou de transfert d’eau souterraine, il est indispensable de comprendre parfaitement
quels sont les principes et les limitations des modéles numériques afin de les utiliser avec efficacité.

10.2. DIFFERENCES FINIES

1l existe au moins trois méthodes qui peuvent étre utilisées pour présenter les différences finies. Nous
allons décrire les deux premiéres, a savoir la méthode des différentielles et celle du bilan de masse a ’aide
d’un exemple simple, et aborder ensuite plus rigoureusement la troisieme, celle des différences finies intégrées.
Pour la méme équation, les résultats seront identiques.

Considérons d’abord I’équation simple de I’écoulement dans une nappe captive, en deux dimensions

(5.3.10) qui s’écrit:
0 Oh 0 Oh oh
iz (T” az) "5y (Ty ay> A

ou T est la transmissivité qui peut varier dans I’espace [L2T 1], h est I'inconnue, la charge (longueur), S est
le coefficient d’emmagasinement qui peut varier dans 'espace (sans dimension), et g est le terme source/puits
qui, & chaque point, représente la somme algébrique de la densité de ’alimentation ou du débit a la sortie

* The International Groundwater Modeling Center, Holcomb Research Institute, Butler University, Indianapolis, In.
46208 ou TNO-DGV, Institute of Applied Sciences, PO Box 285, 2600 Delft, Pays-Bas. L’un ou Pautre de ces deux
instituts fournira tous les renseignements nécessaires.
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de Paquifere, qui varie également dans I’espace. Ceci s’exprime en débit d’écoulement par unité de surface
[LT-!] et le terme est positif pour un puits et négatif pour une source.

Nous recherchons la solution de cette équation sur un domaine fini limité avec des conditions aux limites
imposées (voir § 6.3.). Nous considérerons des limites & charge imposée (c’est-a-dire de Dirichlet) ou des
flux imposés (c’est-a-dire de Neuman). N’importe laquelle de ces deux conditions aux limites peut étre
imposée sur différents segments des limites. Les valeurs correspondantes de la charge ou des flux imposés
sont supposées connues, ainsi que les valeurs de T, S et @ dans la totalité du domaine. Pour les premiers
exemples simples, nous supposerons que 1’équation est résolue en régime permanent (c’est-a-dire, 0h/0t = 0)
et que T est isotrope. Un maillage carré est superposé au domaine ou ’6quation doit étre intégrée (fig. 10.1);
la taille du maillage est déterminée par la précision que I’on souhaite obtenir dans I’approximation numérique
de la vraie solution (plus les mailles seront petites, meilleure sera I'approximation). Les coordonnées z et y
dans le domaine seront prises le long des c6tés du maillage.

Le principe de la méthode des différences finies est la recherche de la valeur numérique, au centre de
chacun des carrés, de la charge hydraulique qui est supposée représenter une valeur “moyenne” de la vraie
charge de chaque maille. Les mailles sont numérotées de 1 & r; Hy & H, sont les charges aux nceuds (les
centres des carrés) et Ty 4 T, S; 4 S, et Q; & Q, sont la transmissivité, le coefficient d’emmagasinement
et le terme source dans chaque maille, supposés étre respectivement la moyenne de T et de S sur 'intégrale
de ¢ dans la maille. Si un nceud i tombe sur une limite 4 charge imposée, H; sera connue a ce nceud; si le
c6té d’une maille représente une limite & flux imposé, le flux entrant dans la maille a travers cette limite sera
connu. Considérons (fig. 10.2) cinq nceuds voisins a lintérieur du maillage, que nous appellerons pour plus
de facilité C, N, E, S et W (centre, nord, est, sud et ouest) respectivement, bien qu’ils alent, en réalité, des
numéros entre 1 et r selon le systéme de numérotation choisi, généralement de I'ouest a I’est et du nord au
sud.

=

Figure 10.1. Maillage carré de différences finies sur un domaine limité,

. YL__-
S. x

Figure 10.2. Cing nceuds voisins sur un maillage de différences finies.

Nous utiliserons trois méthodes différentes pour établir 'approximation de différences finies de I’équation
différentielle partielle continue pour I'écoulement en régime permanent, qui est:
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0 0h 0 Oh
7z (T a—x'> + 5; (T %) =q (10.2.1)

Nous ne traiterons pas le probléme de la consistance de I'approximation des différences finies, ce qui
revient 3 montrer que, quand la taille des mailles tend vers zéro, la solution approximée H tend vers la vraie
solution h. On peut démontrer que, pour les différences finies et les éléments finis, ceci est en effet le cas.

La méthode a été bien décrite par Varga (1962), Remson et al. (1971), Thomas (1973), Prickett (1975),
Narasimhan et Witherspoon (1976), Trescott et al. (1976), Mercer et Faust (1981) et Wang et Anderson

(1982).
10.2.1. Approximation des dérivées par différences

Le nom “différences finies” vient de ce que les dérivées sont approximées par différences. Si a est la
taille d’un carré, nous pouvons écrire:

approximation de % entre les nceuds Wet C = ————HC :l Hu
approximation de %’i— entre les nceuds C et E = —-——He ; He
approximation de g—z entre les nceuds S et C = He— H,
approximation de oh entre les nceuds Cet N = Hn— He

Jy

Maintenant nous devons approximer les dérivées du second ordre, ou plus précisément, les dérivées
telles que (8/8z)(TAh/8z). Soit Thc, Tec, .- les valeurs des transmissivités évaluées entre N et C, E et C,

etc...(voir § 10.2.5. pour I’évaluation de celles-ci 4 partir de la transmissivité Ty, T¢,. .. dans chaque maille).
Pour le nceud C, nous pouvons écrire:

o 0 Oh
approximation de 32 <T -5;) dans C

(T 6—h entre Cet E- [T @- entre W et C / a
Oz dzr

= [Tec He = Hc__ - Twc'H"'_'c — Hw_] / a
a

a

= ec(He - Hc)/a2 + Twc(HW - HC)/a2

De méme, nous obtenons:

h - s -
approximations de _8_ Ta—- dans C = Ty Hy - He + TSCH H
Oy dy a?

a?

En additionnant ces deux termes, multipliés par a?, et étant donné (10.2.1), nous trouvons:

Tnc(Hn - Hc) + Tec(He - Hc) + Tsc(Hs - Hc) + Twc(Hw - Hc) = az(i = Qc (1022)

ol § serait la moyenne du terme source ¢ sur la maille. Cependant, a? est alors égal & Q., l'intégrale de ¢
sur la maille.

Ceci est 1'équation des différences finies pour le nceud C de I'équation différentielle partielle originelle.
'Remarquez que cette équation est linéaire en H;; s’il y a p nceuds dans le maillage, ou la charge n’est pas
imposée (c’est-3-dire que dans r —p nceuds situés sur les limites, la charge est imposée), alors notre probléeme
a p inconnues et nous pouvons écrire p équations linéaires semblables & (10.2.2) pour ces p nceuds. La solution
dans chaque nceud est ainsi obtenue en résolvant un systéme linéaire de p équations avec p inconnues, ce qui
est mathématiquement insignifiant (§ 10.4.). Notez que le numéro d’ordre des p inconnues ne se trouvera
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pas, en général, étre de 1 & p: selon le systéme de numérotation utilisé et la position des limites a charge
imposée, ces numéros se situeront entre 1 et r, le nombre total de carrés.

Les équations de différences finies pour les nceuds voisins d’une limite a flux imposé sont légérement
différentes, mais nous les verrons plus tard.

10.2.2. L’équation de bilan de masse

Au lieu de commencer par I’équation différentielle partielle (10.2.1), nous pouvons établir I’équation de
différences finies en n’utilisant directement que la loi de Darcy et le principe de la conservation de la masse.
Prenez la maille C dans la figure 10.2. Dans un régime permanent, le principe de la conservation de la
masse impose que la somme algébrique des flux massiques traversant chacun des quatre c6tés de la maille
C soit égale a la masse qui entre dans C par alimentation ou en sort par débit aux exutoires, c’est-a-dire a
Pintégrale du terme source/puits pq sur la maille C, ou p est la masse volumique du fluide. Avec la loi de
Darcy, nous pouvons estimer ces flux directement. Nous garderons la méme notation que celle de (10.2.1)
et supposerons que ces flux sont positifs quand ils quittent C, tandis que g est positif quand c’est un puits
(débit de sortie) de sorte que ’équation de bilan de masse devient:

somme des flux de masse + intégrale de pg =0
et flux de masse quittant C par un c6té = (superficie du coté) x (vitesse) x (masse volumique du fluide)

ae (=K g%) P

ol e est I’épaisseur de 1'aquifere, K est la conductivité hydraulique, n est la normale sur le coté dirigée vers

Pextérieur, a est la taille d’'une maille et 7 = Ke. Le flux massique quittant C par un c6té est alors donné
par apT3h/0n.

Pour chaque cété, nous avons donc:

flux quittant le coté entre W et C = — apTwcﬂ‘fE‘
flux quittant le coté entre N et C = — aanc-Ii“;—HE
flux quittant le coté entre E et C = — ap ecH ;H
flux quittant le coté entre Set C = — astcﬁﬂ;—H‘-

et I'intégrale de pq sur la maille C est pQ. si p est constant.

Ensuite, si nous écrivons 1’équation de bilan de masse, en simplifiant par p, supposé constant, nous
obtenons 4 la fin exactement la méme équation que (10.2.2). Ceci nous aidera a établir la forme de I’équation
des différences finies pour les nceuds voisins d’une limite & flux imposé. En effet, chacun des termes tels que
+Ty(Hy, — H.) représente un flux volumique entrant par le coté du carré C entre N et C. Par conséquent, si
un co6té d’une maille est une limite a flux imposé, il suffit de substituer la valeur imposée de ce flux, calculée
le long du coté donné, a I'expression des différences que I’on obtiendrait normalement. Par exemple (Fig.
10.3), si le coté au nord de C est une limite & flux imposé, c’est-a-dire qu’il n’y a pas de nceud au nord de
C, alors ’équation des différences finies devient:

Tec(He - Hc) + Tsc(Hs - Hc) + Twc(Hw - Hc) —F= Qc

ou

Tec(He - Hc) + Tsc(Hs - Hc) + Twc(Hw - Hc) = Qc + Fn

ou F, est le débit d’écoulement imposé [L3T 1] qui traverse le cté au nord de C, autrement dit, I'intégrale
du flux imposé sur le coté, et F est compté comme positif quand il quitte le domaine. Une telle équation
reste linéaire dans H;, mais contient une inconnue de moins que I’équation habituelle. De méme, si dans
une équation a différences finies, une des charges, par exemple H., est une valeur imposée (représentant
une condition aux limites de charge imposée), alors le terme T..He est connu et sera transféré au second
membre de I’équation, ce qui ne laissera que les inconnues dans le premier membre. En général, ceci est
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Figure 10.3. Limite a flux imposé

X

sans importance pour la résolution de I’ensemble du systeme linéaire de p équations avec p inconnues. On
peut, en effet, démontrer que la matrice de ce systéme linéaire est toujours réguliere (c’est-a-dire qu’elle peut
étre inversée et qu’elle a une solution unique), & condition qu’en régime permanent au moins une maille du
domaine ait une condition aux limnites de charge imposée.

10.2.3. Différences finies intégrées

Cette méthode est une maniere plus rigoureuse d’établir des équations de différences finies. En général-
isant, nous supposerons maintenant que la transmissivité du milieu est anisotrope avec z et y comme direc-
tions principales d’anisotropie, et que le maillage est constitué de polygones d’une forme quelconque et ayant
un nombre quelconque de cotés. Soit D; un de ces polygones, I son centre (ou nceud) et J et K les nceuds
de deux polygones voisins (Fig. 10.4). La définition exacte du “centre” d’un polygone (autrement dit, son
centre de gravité) est sans importance pour le moment; nous donnerons des exemples plus loin.

Dans la totalité du domaine et, par conséquent, également dans D;, ’équation différentielle partielle de

1’écoulement:
I¢] oh 0 Oh
w(rm) s (mg)=

doit étre vérifiée & chaque point (z,y). Selon le principe des différences finies intégrées, seule 'intégrale de
cette équation sur chacun des polygones D; doit étre vérifiée. Nous écrivons donc:

8 oh\ 8 oh .
/,,./[5:(“%)*@(“'a—y)]d“’y-/n./qd“”"y = her

K

Figure 10.4. Un polygone pour I'approximation de différences finies intégrées.

ou p est le nombre de polygones dans lesquels la charge est inconnue (c’est-a-dire non imposée). Autrement
dit, Péquation différentielle partielle ne doit plus étre vérifiée a tous les points, mais seulement en moyenne
sur chaque polygone du maillage. En utilisant des mathématiques trés simples, telles que ’expansion en
séries de Taylor, nous établirons maintenant rigoureusement la forme générale d’une équation de différences
finies. Avec la formule d’Ostrogradsky, 'intégrale spatiale sur D; est d’abord transformée en une intégrale
de contour sur le périmétre I'; de D;; si A est un vecteur quelconque, nous pouvons écrire:
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-/D / div Ad.rdy:/ (A,n)ds

ou n est la normale extérieure a T; et (A,n) le produit scalaire. Ici, nous avons:

Oh Oh
./r. [TI 3z "= + Ty M ny] ds = /D. /qd.rdy (10.2.3.)

ol n; et ny sont les cosinus directeurs de n, et ds est un élément de T}.

Estimons cette intégrale sur un c6té, AB, de D; (Fig. 10.4). Remarquez qu’elle représente, par définition,
le débit échangé entre les polygones D; et D; a travers AB. Afin d’estimer les dérivées Oh/0z, 6h/0y le
long de AB, nous aurons besoin de trois nceuds voisins, en général, I, J et K. Ce n’est que dans des cas trés
simples que les deux nceuds I et J seront suffisants, comme nous le verrons plus loin. On montrera également
comment choisir le nceud K quand cela sera nécessaiure. Pour le moment, il suffit de bien comprendre que
le méme nceud K doit étre choisi quand le débit d’écoulement le long de AB est estimé pour 1’équation du
polygone D; ou D;; sinon, I’équilibre des masses ne sera pas conservé dans la totalité du domaine.

Soient h;, hj et hy les charges réelles aux nceuds I, J et K, et M un point quelconque de AB. Avec
I’expansion en séries de Taylor au premier ordre, nous pouvons écrire:

oh Oh
oh Oh
hj = hm + (zj — 2m) (6_.r) + (Y — Ym) (3_y)

hi = hp + (zk = Zn) (gg)m * (Y = m) (55) m

En supposant h;, h;j et hy connues, ceci est un systéme linéaire avec trois inconnues, hy,,(8h/0z),, et
(8h/dy)m qui peut étre résolu sans difficulté.

Si nous supposons de plus que les charges réelles h;, h; et h; peuvent étre approximées par les valeurs
de différences finies H;, H; et Hy qui seront estimées aux nceuds I, J et K, nous avons:

(@) _ (H; — Hi)(ye — vi) — (Hie — Hi)(y; — %)
0 ) (2 —zi)(ye — %) = (2 — ) (Y5 — v)
(Ql_) __(Hj — Hi)(zx = z:) = (Hx — Hi)(z; — 7:)
0y)m (25 —zi)yk = wi) = (ze — 2)(yj — W)
Notez que ces expressions ne sont pas des fonctions des coordonnées de M, et qu’elles sont donc constantes
le long de AB. Comme les cosinus directeurs sont également constants le long de AB, nous pouvons écrire:

dh dh dh dh
Jo (7 Gonee s Gy o= (52) e [0+ (5), 7 [

Soient T,y et T oy, les intégrales des transmissivités directionnelles T; et Ty le long de AB. Alors, nous
avons:

(10.2.4.)

oh Oh
AB (Tt —a:nx +Ty a—yny> ds = C,’j(Hj - H,') + C,'k(Hk - H,')

ou Cj; et Cy; sont uniquement des fonctions de la géométrie et des transmissivités:

T abne Uk — 4i) = Tyabny(xk - zi)
(zj — zi)(ye — i) — (2 — z:)(y5 — ¥i)
—T,abn=(y; = ¥i) + T apny (25 — i)
(zj — zi)(ye — i) — (26 — @) (Y5 — vi)

Cij =

Cix =

(10.2.5.)
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On pourrait obtenir des expressions analogues pour les autres cotés du polygone D;. Enfin, si nous
définissons le terme intégrale source/puits sur le polygone par:

Q.~=/D./qdzdy

alors ’équation de différences finies pour chaque polygone aurait la forme suivante:

Cij(Hj - Hi) + Cik(Hk - H.') + C."I(Hz - H.‘) +...= Q,- (10,2,6_)

ce qui est de méme nature que (10.2.2.).

Conditions aux limites

Si un nceud du maillage tombe sur une limite & charge imposée, le H; correspondant est connu. Pour ce
nceud, on n’écrit pas d’équation de différences finies, et chaque fois que H; apparait dans une autre équation,
le terme C;; H; est transféré au second membre. Si le c6té d’un polygone se trouve sur une limite a flux
imposé, ce flux imposé est substitué au terme correspondant de I'intégrale de contour et ensuite transféré au
second membre de ’équation. Plus précisément, si 8h/0n est imposé le long de AB, alors

Oh Oh _ 9 2, Oh
/AB (Tr a_xn.t+Ty 6—yny) = /AB (TInI+Tyny)8_n ds

ce qui peut étre estimé. Remarquez que quand un maillage est dessiné en différences finies sur une domaine,
ses nceuds doivent se retrouver sur les limites & charge imposée et ses cotés sur les limites a flux imposé.

10.2.4. Différences finies intégrées: cas particuliers

a) Les rectangles et les carrés

Si les directions principales d’anisotropie de la transmissivité z et y sont paralléles aux cotés du maillage,
I'intégrale de contour dans (10.2.3) peut s’écrire (voir Fig. 10.5) comme suit:

h 0h Oh Oh
r 4 ltzr T, — ds = T —d —_—
/r.» (T gz Ty 8yn"’> ’ /AB T 52 y+/BB’ T 5y

oh oh
+ T, 224 +/ T, Zdz
/B’A’ 52T Jaa Y By

Alors, si les nceuds sont les centres des rectangles (intersection des diagonales), I'expansion en séries de
Taylor au premier ordre peut s’écrire en utilisant seulement deux nceuds voisins et donne, par exemple pour

M € AB:
?_}i _ H.-H.
0r /), T re—1z.
Si 'on note:

1
Tree = —— T.d
<~ TaB| Jap ="

la transmissivité directionnelle moyenne le long de AB, ol |AB]| est la longueur du segment AB, alors:

h —
/ T 6—'dy = Trec o a(He - Hc)
AB oz e — Ic

et, de méme, nous trouvons finalement:
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'] N 8
v Y
W, c. .E l
A’ s A )

Figure 10.5. Maillage rectangulaire.

Si tous ces rectangles sont de la méme taille (a le long de z, b le long de y), (10.2.7) est réduite a:

a b
E(Hs - Hc) + Trwe ;(Hw - Hc) = Qc

Si le milieu est isotrope (T; = Ty = T), et le maillage constitué de carrés (b = a), cette expression se
réduit 4 (10.2.2) que nous avons établie auparavant par deux méthodes plus simples. Dans le cas des rectan-
gles, il est important de noter le rapport des coefficients de deux inconnues dans des directions différentes,
par exemple H, et H. dans le systéeme linéaire, soit:

Tync (0)2
TIQC b
Si le rapport d’anisotropie est voisin de 1 et si a/b est voisin de 10, le rapport de deux coefficients de la
matrice du systéme linéaire sera voisin de 100. En fonction de la méthode utilisée pour inverser la matrice, de
la taille de celle-ci et de I’exactitude de ’ordinateur (mots de 16, 32 ou 60 bits), un rapport aussi important

peut souvent créer des difficultés numériques causées par des erreurs d’arrondi. La solution calculée peut
alors étre inexacte. Avec des mots & 32 bits, un rapport a/b de 5 est souvent maximum.

a b
Ty"C E(Hn - Hc) + Txec ";(He - Hc) + Tysc

b) Carrés gigognes

Il est souvent nécessaire d’obtenir plus de précision dans une partie du domaine que dans d’autres, ce
qui veut dire qu'’il faut pouvoir varier la taille des mailles dans le maillage. Une fagon d’y arriver est d’utiliser
des rectangles de tailles variables (Fig. 10.6a), mais ce procédé augmente inutilement le nombre total des
mailles, et il est limité par le rapport a/b cité ci-dessus. Une autre fagon est de se servir de mailles carrées
gigognes (Fig. 10.6b). A condition que deux carrés voisins aient, au plus, une différence de taille d’un facteur
2,1l n’y a pas de restriction a la taille relative des plus petits et des plus grands carrés. Quand deux carrés
voisins sont de la méme taille, on utilise I’expression générale, par exemple, Tync(Hn — Hc). Quand des carrés
voisins sont de tailles différentes (Fig. 10.7), ’expansion en séries de Taylor sur trois nceuds de I’équation

(10.2.4) doit étre utilisée pour estimer l'intégrale de contour. Si a est la taille du grand carré dans la figure
10.7, nous obtenons avec (10.2.4):

(%g)m = 3_2‘1 [(H; — H,) + (He — H,)]

el

Figure 10.7. Carrés gigognes voisins.

et, comme le long de AB, n; =1 et ny = 0:
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(0)

(b)

HHH

Figure 10.6. Maillage raffiné par (a) rectangles de tailles variables et (b) carrés gigognes.

8h 8h 2T ik
/AB (Tz -a—;n, +Ty -b;ny) ds = -——3'— [(HJ - H,) + (Hk - H,)]
ol
1
Tzijk = - T:ds
Q JAB

Figure 10.8. Polygones de Thiessen (ou de Voronoi.

195

est la transmissivité directionnelle moyenne le long de AB. Comme les flux qui traversent AB doivent
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étre identiques lorsqu’ils sont estimés dans les mailles I, J et K, I’expression ci-dessus se décompose en
(2Tijx /3)(H; — H;) pour les échanges entre I et J, et en (2T%;j1/3)(Hx — H;) pour les échanges entre I et K.

Remarquez que le rapport entre deux coefficients de la matrice du systéme linéaire dans un milieu
isotrope est au plus 2/3, et qu’il est indépendant de la taille des carrés: il n’y a, en effet, aucune restriction
a la taille des mailles pour les carrés gigognes.

¢) Polygones de Thiessen

Un des premiers modéles de différences finies (Tyson et Weber, 1964) utilisait comme maillage des
polygones de Voronoi, également connus sous le nom de polygones de Thiessen (cf. Fig. 10.8). Etant donné
un ensemble de nceuds qui peuvent étre choisis arbitrairement, les polygones de Voronoi sont construits
par I'union des médiatrices de chaque segment, reliant successivement tous les nceuds voisins. Pour de tels
polygones, et si, et seulement si le milieu est isotrope (T; = Ty = T'), l'intégrale de contour peut étre estimée
par une expansion en séries de Taylor, limitée a deux nceuds voisins:

oh oh oh
/;B (T a—xnz+T E_;Jny) ds_/ABT E;ds

si n est la normale extérieure 3 AB. Toutefois,

(?ﬁ) - u M € AB
on/ 13|
et si nous utilisons
T:; = ! T ds
Y |AB| Jas ’

la transmissivité moyenne le long de AB, alors:

Oh Oh _ |AB| .
/AB (T BInI+T ayny) ds =T;; ] (H; — Hy)

ou |AB| et |IJ| se rapportent & des distances (positives).
On obtient des expressions analogues pour tous les autres cotés des polygones.

10.2.5. Estimation des transmissivités moyennes

Les équations de différences finies exigent que les valeurs des transmissivités moyennes (isotropes ou di-
rectionnelles) le long des cotés de chaque maille soient connues. Dans certains modéles, elles sont fournies di-
rectement comme données d’entrée, mais plus souvent, les données d’entrée sont les transmissivités moyennes
(isotropes ou directionnelles) sur la surface de chaque maille. Celles-ci peuvent étre calculées, par exemple
par krigeage (§ 11.4.7.) a partir de mesures locales obtenues par des essais de pompage. Nous verrons aussi
au § 10.6 que ces transmissivités sont souvent ajustées par le calage du modeéle.

Pour le calcul des transmissivités de contour nécessaires, nous limiterons la discussion aux cas particuliers
(des rectangles ou des carrés dans les milieux anisotropes, ainsi que des polygones de Thiessen en milieu
isotrope), mais elle pourrait étre étendue au cas général.

a) Rectangles ou carrés (fig. 10.5)

Nous avons été amenés & estimer des intégrales telles que [, T:0h/0z ds quand nous avons utilisé
Pexpansion de Taylor entre C et E afin d’écrire:

(_9_)1 _H.-H.
oz m_ Te — Tc
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Cette dérivée était supposée uniforme entre C et E, mais s’il y a une transmissivité constante T:c dans C
et T, dans E, le gradient ne peut plus étre uniforme entre ces deux blocs, qui sont en série. Grace a la
conservation de la masse, nous pouvons écrire le long de interface AB (voir § 6.3.b):

8h\ 8h\ € 8h\ € Oh\ €
Tee (a)m* Tee (5:),,, et (a-y),,.* ('a';),,,

ot les indices supérieurs c et e indiquent que les dérivées sont estimées dans le milieu, respectivement a
gauche ou a droite de AB. En écrivant également une expansion de Taylor séparément dans chaque milieu,

nous trouvons:
oh\°© 8r\ ¢
he=hpm + (Ic - Im) (%)m + (yc - ym) (5;)

Ainsi
B (%L . [(xe - “’k)?«: - (ze - :z:e)]

oll Tx = Z, est la coordonnée le long de z de AB.
En supposant encore que he = H. et que hc = Hc, nous avons:

Oh\°€ T,
(5;>m - Tec(ze — ) + Tre(zk — zo) (He— He)

Estimons l'intégrale de contour le long de AB dans le milieu homogene de C (on obtiendrait le méme
résultat en 'estimant dans E); alors, T = Ty et:

Oh Oh\ €
./,;B T: %dy =T (a_x‘) (yb - ya)

m

Tchre(yb - ya)

= H. - H
Tzc(re - xlc) + Txe(xk - Ic) ( ¢ C)

Si nous comparons cette expression avec celle donnée dans (10.2.7), nous voyons que la transmissivité
“moyenne” définie plus haut est la moyenne harmonique:

Tchxe(xe - zc)
Tre(ze — 2i) + Tee(zk — zc)

La méme expression pourrait étre établie pour toutes les directions.
Pour des carrés ou des rectangles, tous de la méme taille, i est le centre de CE et

Trec =

T — 2T1’CTxe
ree TIC + TIe
2T, T,
Type =240 etc
T Ty + Tyn

Pour les milieux isotropes, ces expressions sont valables quand on substitue T a Ty ou T}, par exemple:

21T
Tye = —— 2
T, +Te
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b) Carrés gigognes (fig. 10.7)
Un calcul analogue entre les carrés I et J et entre I et K donne:
Oh AT3i T Te
T, — |dy= ] H; - Hi+ H, - H;
[AB ( 5-”’) v TriTej + ToiTox + 4szTzk( ! + )

Une expression approximée un peu plus simple, ou les flux entre chacun des carrés sont décomposés, est
la suivante:

oh 2T1‘iTx j QTm'TIk
T,— d -——-——-—-————J H'—H,' —_—(H —-H,'
/AB # ( al‘) Y Tri + 2Tr] ( J ) t Txi + 2T1-k( k )

¢) Polygones de Thiessen -fig. 10.8)
De méme, avec un milieu isotrope, nous trouvons:
8h Ok |AB|T:T;
T(Ln, + Sony ) ds = —2 0 (g _
/AB (ar" * 6y"y> * = T, + g )
ou |AB|, |IM] et |MJ| sont des distances.

10.2.6. Différences finies en régime transitoire

Jusqu’a présent, nous n’avons employé que I'équation de ’écoulement en régime permanent (10.2.1). Si
nous voulons résoudre 1’équation de ’écoulement en régime transitoire, nous ajoutons simplement un terme
au second membre de ’équation:

0 oh ad oh Oh
7 (TI a?)*@ (Ty a—y)—swq

ou S est le coefficient d’emmagasinement dans une nappe captive ou la porosité de drainage dans une nappe
libre. Si nous utilisons la méthode des différences finies intégrées (§ 10.2.3), nous ajouterons le terme:

Oh

au second membre de 1'équation des différences finies.

Si H; est la charge des différences finies au nceud I, nous supposerons que dh/0t sur D; peut étre
approximé par 0H;/0t.

Nous définissons alors le coefficient d’emmagasinement moyen comme suit:

1
Si = ———-—/ /Sdrdy
"D U,
ou |D;| est la surface de D;.

Le nouveau terme, qu’il faut ajouter a ’équation des différences finies, est simplement |D;|S;(0H;/0t).
L’équation générale, (10.2.6) deviendrait alors:

0H;
Cij(H; = Hi) + Cu(He — Hi) + ... = Qi + IDilSi =~ (10.2.8)
Pour simplifier, nous utiliserons maintenant une notation de matrice et écrirons (10.2.8) de la fagon
suivante:

MH=S %—]t{ +Q ou %—It{ =S"'MH-571Q (10.2.9)

Si, dans le maillage, il y a p nceuds, ol 'on écrit une équation de différences finies semblable a (10.2.8),
M est une matrice de p x p dont les coefficients sont les C;; ou la somme de ceux-ci sur la diagonale; S est
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une matrice diagonale de p x p et |D;|S; sont les coefficients sur la diagonale; @Q est un vecteur colonne avec
les coefficients Q;; H est un vecteur colonne des p inconnues H;; et 0H /Ot est la dérivée de H, autrement
dit, un vecteur des p dérivées des inconnues 0 H;/0t.

Il y a deux méthodes fondamentales pour résoudre le systéme différentiel de (10.2.9): la méthode
intégrale et la méthode différentielle.

a) Méthode intégrale

Une intégration directe du systéme différentiel nous donne la solution:

H'=(H° - M™'Q)exp (ST!Mt)+ M~'Q (10.2.10)
ou ’exponentielle d’une matrice est définie comme:

A 1,2 A"
et =4+ A+-A"+.. .+ —+...
2 n!
et ou I est la matrice. 'identité, et H® le vecteur des conditions initiales, c’est-a-dire le vecteur H' pour
t = 0; Q est supposé étre indépendant du temps.

Il est alors possible d’approximer 1'opérateur exponentiel de la matrice par un opérateur polynomial
de matrice et, en principe, de résoudre (10.2.10) pour un temps t quelconque. En principe, on utilise de
grands pas de temps & cause de l'erreur inhérente a I’approximation polynomiale et aussi parce que () varie
généralement avec le temps et ne peut étre considéré comme constant que pour un pas de temps donné.

Cette méthode a été utilisée avec succés par Emsellem et Ledoux (1971), mais I'usage n’en est pas tres
répandu.

b) Méthode différentielle

Cette approche est trés largement utilisée. Elle consiste en une approximation de la dérivée du temps par
une différence finie 8H/0t = (H'*2! — H')/At, ou les indices supérieurs représentent le temps ou le vecteur
H est considéré et ou At est le pas de temps de 'approximation. Ceci constitue, en fait, une expansion en
séries de Taylor du premier ordre et peut s’écrire formellement de trois maniéres différentes.

1) Approzimation ezplicile: L’expansion de Taylor s’écrit:

. 6Ht At2 62H‘
t+ At t
H = H"'+ At —t + -—2 ————t2 + ... (10.2.11)

Au premier ordre et en prenant en compte (10.2.9):
HH—At —-Ht 6Ht

_ o-larpt _ o-1nt
Y —6t_S MH"-57'Q

Remarquez que nous avons écrit (10.2.9) au temps ¢ pour les deux membres de I’équation. En réarrangeant,
nous avons:

H'W2 = B4 A((ST'MH' - 57-Q") (10.2.12)

Etant donné H!, H't4! s'obtient donc ezplicitement, autrement dit, en multipliant simplement le vecteur
H! par une matrice en ajoutant quelques termes. Quand nous regardons l'approximation implicite, la
simplicité de (10.2.12) devient évidente. Notez que S~!, I'inverse d’une matrice diagonale, n’est qu’une
matrice diagonale ayant 1/|D;|S; comme coefficient sur la diagonale. La solution de (10.2.9) s’obtient donc
pour chaque pas de temps successif. Etant donné les conditions initiales H°, on calcule d’abord H1, ensuite
H?, et ainsi de suite. La longueur des pas de temps At, ainsi que le terme source/puits @, peuvent varier
au cours de la simulation.

En général, de petits pas de temps sont utilisés au début de la simulation ou chaque fois que Q! change
de maniére significative (voir § 10.6).
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Il y a cependant une limite & la longueur du pas de temps. Si At > At,., ce que I'on appelle le pas de
temps critique, I’approximation explicite devient instable. Ceci est facile & comprendre a partir de (10.2.12).
Si, au temps t, une petite erreur d’approximation ¢! a été faite dans l'estimation de H, alors, au tmps
t+ At, cette erreur est multipliée par (AtS™'M). Sila norme de cette matrice est supérieure a 1, les erreurs
sont amplifiées d’un pas de temps & I'autre et, trés vite, les résultats deviennent dénués de sens. Ecrivons
explicitement une équation du systeme linéaire (10.2.12):

At

Comme les C;; sont positifs, il est évident que le coefficient le plus grand de la matrice (AtS™! M) est:
At Z i Cij
|D;|S;

ot la sommation sur j est étendue & trois nceuds du nceud <.

Comme ce coefficient doit étre plus petit que 1 pour toutes les équations du systéme linéaire, le pas de
temps critique At, est:

At, = min ————-—‘Dilsi

PGy

Quand on utilise ’approximation explicite, il faut d’abord estimer At., et ensuite maintenir At < At..
Notez qu’en général, At. dépend de la surface de la plus petite maille du maillage.

2) Approzimation implicite: L’expansion de Taylor s’écrit:

6Ht+At . At‘l aQHH-At
ERRE T

De la méme maniére que précédemment, au premier ordre, et en prenant en compte (10.2.9):

H' = H'F8 — At (10.2.13)

HH—A! _ Ht aHt+At
At ot

Ici (10.2.9) est écrite au temps t + At dans les deux membres de I’équation. En réarrangeant:

— S—lMHt+At _ S—th+At

1 TONSINS t 1+At
<—A—tS——M)H = SH'-Q (10.2.14)

Maintenant, la solution de ce systéme linéaire n’est plus aussi simple: il faut inverser la matrice
[(1/At)S — M] (voir § 10.4). Etant donné les conditions initiales H°, on peut d’abord calculer H'! en
résolvant (10.2.14), ensuite H?, etc.... Cependant, a chaque pas de temps, il faut résoudre un systéme
linéaire, ce qui demande beaucoup de temps ordinateur comparé a I’approximation explicite. L’avantage de
I’approximation implicite est qu’il n’y a pas de critére de stabilité: la méthode est stable pour toute longueur
de pas de temps. Toutefois, comme pour toute autre approximation du premier ordre, plus le pas de temps
est court, meilleure sera la précision (voir § 10.6).

8) Approzimation de Crank-Nicholson: Soustrayons I’expansion implicite de Taylor (10.2.13) de I'expansion
explicite (10.2.11). Nous trouvons:

HUHAL [t =t At | oAy (aH' N 6H1+At)

ot ot
At? 82Ht 62Ht+At
2 (aﬂ I )+

Nous observons que les termes du second ordre sont proches de zéro, si bien que ’approximation du premier
ordre est presque exacte au troisieme ordre. Elle devient:
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HH-A! — H! 1 6Ht aHHrAt
a2 (7* T)

At T2
En utilisant (10.2.9), nous pourrions remplacer 0H/8t par S™'(M H — Q) & chaque pas de temps. Par
souci de généralité, refaisons cette soustraction, mais cette fois-ci en multipliant (10.2.13) par o et (10.2.11)
par (1 — a). Nous trouvons:

Ht+At _ Ht 6Ht aHH-At
—_——=(1-a +a

At ( ) ot ot

Le paramétre o peut varier entre 0 et 1. Pour o = 0, I’approximation est totalement imprﬁ/cite. Pour
a= %, ’approximation porte le nom de “Crank-Nicholson”, mais d’autres valeurs de a entre 0 et 1 peuvent
étre employées. En utilisant (10.2.9) et en réarrangeant:

(KIZS - aM) HitAt = [és +(1- a)M] H'—(1-0a)Q' —aQ't?! . 110.2.15)

noindent En ce qui concerne I’approximation implicite, il faut résoudre un systéme linéaire a chaque pas
de temps si @ # 0. On peut cependant démontrer que pour a < %, la méthode est instable pour des pas de
temps plus grands que le pas de temps critique, que nous avons défini pour I'approximation explicite. En
pratique, on utilise toujours un a légérement plus grand que 0,5, par exemple 0,55 ou 0,6.

Narasimhan et Neuman (1977) ont également proposé une méthode explicite-implicite ou a varie d’une
maille 4 Pautre dans le domaine. Si un critére local de stabilité est satisfait pour une longueur donnée du
pas de temps, & est fixé a zéro et ’équation de cette maille-la est résolue explicitement. Ensuite, pour toutes
les mailles ou le critére de stabilité n’est pas satisfait, o est fixé & 1 et le systéme d’équations est résolu
implicitement.

4{) Approzimation de Gear: Jusqu’ici, I'interpolation utilisée pour H entre t et t + At a toujours été linéaire.
L’approximation de Gear utilise, quant & elle, une approximation parabolique dans le temps:

Hi=at’+bt+c

A chaque pas de temps, les trois coefficients a, b et ¢ de chaque maille sont ajustés par I'imposition de trois
conditions sur la parabole: celle-ci passe & travers les deux pas de temps précédents, H,-t"m et H}, et sa
dérivée au temps t + At est égale a celle donnée par (10.2.9) écrite a t + At. Par exemple, si At est le méme
pour deux pas de temps consécutifs, nous trouvons:

1 4 2

H1+At — ___Ht—At + _Ht + =

3 3 3

En réarrangeant, il nous faudrait résoudre un systéme linéaire & chaque pas de temps. L’approximation

de Gear est stable pour tous les pas de temps, et elle est également juste au second ordre. Comme il faut

connaitre H pour deux pas de temps consécutifs, une autre méthode (par exemple, implicite) doit étre utilisée
pour le premier pas de temps.

AL(SIMH™A - 571Q)

10.2.7. Probléme non linéaire

Un probléme non linéaire trés courant dans la modélisation des eaux souterraines est celui des nappes
libres. Nous avons vu dans § 5.1.d. que, dans les équations de D’écoulement ((5.1.1), (5.1.2) et (5.1.3)), la
transmissivité est fonction de I’épaisseur saturée de I’aquifere, c’est-a-dire de la charge hydraulique h.

Le probléme des nappes libres peut étre traité dans les modéles numériques en changeant itérativement
la valeur des coefficients de la matrice M dans (10.2.9). Cette approche est décrite dans le § 10.4.2.3, aussi
bien pour le régime permanent que pour le régime transitoire.

1l faut aussi vérifier que la cote de la charge hydraulique dans un modéle de nappe libre ne tombe pas
au-dessous du substratum ou ne s’éléve au-dessus de la surface du sol. Dans le premier cas, I’aquifére devient,
en fait, sec, et la maille correspondante du domaine doit étre éliminée, ce qui introduit une condition aux
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limites de flux nul. En pratique, il est plus simple d’accepter que le modele comprenne une charge calculée,
qui peut se situer au-dessous du substratum, et de donner a la maille une transmissivité positive tres petite,
par exemple 1072 ou 10~ fois la valeur normale dans le domaine. Le pourtour de cette maille devient, en
pratique, une limite & flux nul, mais s’il y a de linfiltration ou si la charge augmente de nouveau (en régime
transitoire), la maille peut redevenir une partie active de I'aquifére. Dans le second cas, quand la charge
monte au-dessus de la surface du sol, cela veut dire qu’un exutoire a été créé (source, écoulement dans une
riviére, etc...). Le pourtour de la maille correspondante du modele devient une limite a charge imposée ou
la charge imposée est la cote du sol (cote de la source, du lit de la riviere dans la maille, etc...). 1l faut
alors vérifier que le flux dans cette maille demeure un flux sortant. Lorsque cela cesse d’étre vrai dans un
état transitoire, la charge tombe au-dessous de la surface du sol, et la maille ne doit plus étre considérée
comme une limite & charge imposée. Elle ne peut rester une limite a charge imposée que s’il y a assez d’eau
de surface présente dans cette maille pour garantir qu’un flux d’eau entre dans le modéle (par exemple, de
Peau arrivant de I’amont dans une riviere). Voir au § 10.2.10 une discussion sur la fagon d’appliquer, en
pratique, une limite a charge imposée a une riviére.

Un autre probléme non linéaire est celui du dénoyage d’une nappe captive. Des que la charge hydraulique
d’une nappe captive tombe au-dessous de la cote du toit,
1) le coefficient d’emmagasinement S dans la maille doit étre remplacé par la porosité de drainage wy et
2) la transmissivité peut devenir fonction de I’épaisseur saturée de I'aquifere, c’est-a-dire de la charge.

Remarquez que la transmissivité dans une nappe libre est, par définition:

h
T:/ K dz

oll o est le substratum et h la charge. La variation de T avec h peut parfois étre négligée si la distribution
de K(z) est telle que des matériaux trés perméables se trouvent au fond de 'aquifére et uniquement des
matériaux peu perméables en haut.

Les équations de I’écoulement multiphasique (§ 9.1.e) et en zone non saturée (§ 9.2.1) sont également
fortement non linéaires. La méthode utilisée pour les résoudre est décrite au § 10.4.2.30

10.2.8. Systémes multicouches

Dans les grands bassins sédimentaires, on trouve souvent des séries de couches perméables et imper-
méables (ou semi-perméables) qui forment, respectivement, des aquiferes, des aquitards et des aquicludes.
Les aquitards sont des couches ol I'eau ne peut pas étre prélevée dans des puits, mais qui sont suffisamment
perméables pour permettre une drainance significative vers les aquiferes voisins. Les aquicludes sont des
couches moins perméables, & travers lesquelles la drainance est insignifiante au cours d’un essal de pompage
dans un aquifere voisin, mais qui peuvent permettre une drainance significative a I’échelle régionale (voir
Javandel et Witherspoon, 1969; Neuman et Witherspoon, 1969a,b). De tels systémes sont connus sous le
nom de systemes multicouches.

Il est facile de modéliser les systémes multicouches. On fait les hypothéses suivantes:

1) T’écoulement est essentiellement paralléle aux couches dans les aquiféres;
2) il est généralement orthogonal aux couches dans les aquitards et les aquicludes;
3) la drainance peut étre introduite comme terme source dans les équations de I’écoulement des aquiféres.

Cette derniére hypothéses a d’ailleurs été démontrée au § 5.3.9.

Le modeéle représentera chaque aquifére du systéme par une couche de mailles & deux dimensions. Afin
de rendre le probléme plus facile & traiter, on choisit des mailles de taille identique pour les deux aquiferes
superposés. Ce n’est que dans le cas des mailles gigognes que I’on peut utiliser des mailles superposées ayant
une différence de taille d’un rang (Fig. 10.9).

1l y a deux maniéres d’estimer le flux de drainance a travers un aquitard séparant deux mailles super-
posées:

- Appliquer la loi de Darcy directement et écrire le flux de drainance ainsi:

K’
F = ~—(Hy ~ H) (10.2.16)
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Figure 10.9. 12.9. Systémes multicouches

ott H, et Hy sont les charges dans les mailles en haut et en bas respectivement. On intégre ensuite ce flux
F sur la taille de la maille. En différences finies, cela signifie multiplier F par la surface de la maille. En
éléments finis (voir § 10.3), puisque Hy, et H, varient sur le domaine d’intégration D;, on fait cette intégration,
soit aprés avoir substitué I’expression de H dans (10.2.16) comme pour la formulation transitoire “conforme”
dans (10.3.10), soit en utilisant la valeur au nceud de H; dans D; comme pour la formulation “concentrée”.
Avec la formulation de Galerkin, cette intégration est, de plus, pondérée par une fonction de base Ny comme
dans (10.3.17).

On ajoute le terme source qui en résulte au second membre de 1’équation (10.2.6) en différences finies,
ou de I’équation (10.3.7) en éléments finis, pour le systéme d’équation de la couche t, et on le soustrait du
second membre des mémes équations pour la couche b (il faut se rappeler que le terme source de I’équation
de 1’écoulement est négatif pour une source et positif pour un puits).

Le terme source ainsi obtenu est ensuite transféré au premier membre de I’équation, ce qui ajoute une
nouvelle inconnue au systéme linéaire, par exemple:

Cij(H; = Hi) + Cix(Hx = Hi) + ...+ Cue(He — Hi) = Qi

ou H, est la charge dans le maillage en haut de la maille I.

Ceci ne fait qu’augmenter la taille du systéme linéaire qui doit étre résolu, et rendre chaque couche
dépendante du comportement des autres (ce qui se passe en réalité). On peut avoir deux de ces termes en
méme temps, un pour un aquifere sus-jacent et un autre pour un aquifére sous-jacent.

Cette expression est strictement valable pour un régime permanent; dans un régime transitoire, elle
suppose que le régime permanent du flux & travers P’aquitard est atteint instantanément et néglige tout
emmagasinement d’eau dans les aquitards.

Pour étendre sa validité, il faut ajouter la moitié du coefficient d’emmagasinement de I’aquitard a chacun
des coefficients d’emmagasinement de ’aquifére sus-jacent et de I’aquifere sous-jacent: de cette fagon, 'eau
emmagasinée dans l’aquitard est prise en compte. Toutefois, la validité de I'hypothése d’un débit permanent
a travers I’aquitard peut uniquement étre controlée par:

217!
exp (————” Slg‘e,’?t) <05 (10.2.17)
ot K’ est la conductivité hydraulique, S est le coefficient d’emmagasinement spécifique (voir (5.3.8)), e’ est
’épaisseur et At=longueur du pas de temps du calcul transitoire de 1’aquitard.

Si I’hypothése d’un régime permanent dans l’aquitard n’est pas satisfaite, il est possible de se servir
d’une solution analytique de ’équation de 1’écoulement en une dimension dans I'aquitard et d’estimer ana-
lytiquement le flux de drainance F & la limite des aquiféres voisins. Toutefois, cette expression analytique
comporte une convolution et les calculs en sont un peu plus longs:

‘oH,
o Ot

t 9H,

Ft(t) = — fP-rydr+ | —f(t-r)dr

avec
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2,”2 'l
f(t) = [1 +2 Z(a)" exp ( 516{2 t)]

avec a= -1 pour fP et +1 f*. F* est le flux de drainance dans la couche supérieure.

Néanmoins, on peut calculer les intégrales de convolution par récurrence sans qu'il soit nécessaire de
mettre en mémoire la valeur de H en tant que fonction du temps (voir Marsily et al., 1978; Trescott et al.,
1976; Herrera et Yates, 1977; Hennart et al., 1981). L’équation (10.2.17) vient de cette solution analytique.

10.2.9. Systémes a trois dimensions

Dans le cas ol une approximation multicouches ou & deux dimensions n’est pas valable, c’est-a-dire
quand il faut estimer les composantes réelles du flux en trois dimensions, alors on est obligé de construire un
réseau en trois dimensions. En différences finies, on utilisera des cubes ou des parallélépipédes. En éléments
finis, des tétraédres (éléments linéaires) ou des hexaédres (éléments bilinéaires) seront préférés. Comme
pour les systemes multicouches, ceci revient a ajouter des termes a I'expression discrétisée de I’équation de
I’écoulement afin de représenter les flux dans, par exemple, six directions pour un cube (nord, sud, est, ouest,
haut et bas autour du cube central). Les différences sont alors que 1) nous devons utiliser la conductivité
hydraulique K et le coefficient d’emmagasinement spécifique S, a la place de T et S employés en deux
dimensions; 2) les intégrales de contour de T le long de la limite d’'une maille deviennent maintenant une
intégrale de surface de K sur le c6té du cube; 3) 'intégrale de surface de S devient une intégrale de volume
de S,; et 4) le terme source doit étre défini par unité de volume et ensuite intégré a I'intérieur du volume de
chaque élément.

L’équation linéaire qui en résulte est, cependant, identique a (10.2.6) ou (10.3.7), mais les Cj; sont
donnés par ces intégrales de surface.

Remarquez que si le milieu est anisotrope, le rapport entre les dimensions horizontales-verticales de la
maille doit étre ajusté de fagon a ce que les C;; obtenus soient du méme ordre de grandeur dans les trois
directions. Sinon, le systéme liénaire ne peut étre résolu avec précision a cause des erreurs d’arrondi (voir §
10.2.4).

1l est extrémement coiteux d’utiliser un modéle a trois dimensions puisque le nombre de mailles devient
rapidement énorme. Freeze (1971) a calculé I’écoulement en trois dimensions sur un bassin versant en incluant
et la zone saturée et la zone non saturée. En pratique, la modélisation en trois dimensions ne s’utilise que
pour des problemes locaux (par exemple, barrage, dénoyage d’une excavation).

11 vaut souvent beaucoup mieux étudier I’écoulement en deux dimensions sur plusieurs sections du milieu
plutot que sur un modéle a trois dimensions. Pour ce type de modélisation, on étudie une épaisseur unité du
milieu, orthogonale au plan de la section. Par conséquent, on utilise A et S, au lieu de T et S, généralement
employés dans les équations 4 deux dimensions.

Sur de telles sections, il est souvent nécessaire de définir la position de la surface libre. En régime
permanent, ceci peut se faire itérativement en imposant d’abord la condition A = z sur une surface choisie a
priori (voir § 6.3.d) en vérifiant ensuite que la seconde condition (K'9h/0n imposé) est également satisfaite.
Sinon, la position de la surface est modifiée. Avec la méthode des éléments finis, on obtient plus de précision
sur de tels probléemes de surface mobile qu’avec celle des différences finies (¢f. Neuman et Witherspoon,
1970, 1971).

En régime transitoire, il est possible de déplacer une surface libre de la méme maniére, mais cela ne
reproduira pas correctement les processus physiques de drainage/imbibition d’un milieu non saturé. Il vaut
donc mieux résoudre un probléeme complet d’écoulement saturé-non saturé en utilisant ’équation de Richard,
la charge étant I'inconnue (voir § 9.2.1), et déterminer ensuite la position de la surface libre dans le domaine
qui sera le point ol p =0 (ou h = z) (cf. Freeze, 1971).
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10.2.10. Comment représenter les riviéres

Pour les aquiferes non captifs en zone tempérée, les riviéres jouent un réle de source ou de puits vis-a-vis
des aquiferes. On peut les représenter en imposant la charge & chaque nceud du modeéle ol coule une riviere.
Cette charge est alors la cote de I’eau dans le cours d’eau.

En pratique, les lits des rivieres sont tres souvent couverts d’une couche de limon, et le flux échangé
entre la riviere et ’aquifere crée une différence de charge entre les deux. Au § 6.3.c, nous avons montré que
celle-ci peut étre représentée par une condition aux limites de Fourier. En modélisant un aquifére, on préfere
donc imposer la charge dans la riviére a une maille qui est superposée a I’aquifére et liée a celle-1a par un
coefficient d’échange semblable a celui que l'on utilise pour représenter la drainance a travers un aquitard
en régime permanent,

Klaiz

el

Cir =

out K’ est la conductivité hydraulique de la couche de limon sur le lit de la riviere, e’ est ’épaisseur de cette
couche de faible conductivité entre la riviere et 1’aquifere, et a’? est la surface de la partie de la riviere se
trouvant en contact avec I’aquifére dans la maille.

Le terme Cir(H:— H;), ot H; est la charge imposée dans la riviére, est ensuite ajouté au premier membre
de I’équation de ’écoulement, par exemple (10.2.6). En général, on ne mesure ni K’, ni ¢’, ni a'?. On ajuste
le coefficient C;, de facon & ce que la différence de charge H,— H; réelle observée soit reproduite par le modéele
quand le bilan des flux d’écoulement est respecté (par exemple, écoulement total drainé par la riviere).

Méme s’il n’y a pas de différence de charge notable entre le cours d’eau et ’aquifére, on emploie néan-
moins une telle représentation si Cj; est grand. Il est ainsi tres facile de calculer I’écoulement échangé entre la
riviere et 1’aquifére et (si nécessaire) de limiter I'écoulement a une valeur prescrite. Ceci peut étre nécessaire
quand la riviére alimente I’'aquifere. Sila charge dans I’aquifere décroit de maniére importante au voisinage
d’un cours d’eau, elle peut, en fait, atteindre un niveau ou les deux ne sont plus reliés: soit le milieu devient
non saturé, soit un déme de recharge avec un gradient vertical de 1 se forme sous la riviere. Dans les deux
cas, le débit d’alimentation n’est plus fonction de la charge de laquifére et devient une valeur constante
imposée. En modélisation d’eau souterraine, une telle représentation des rivieres par un maillage superposé
a charge imposée, un coefficient d’échange et un débit d’alimentation limité imposé est connu sous le nom
de drain & débit limite.

Dans les zones arides, ol les riviéres sont en général séches sauf pendant les périodes de crues, la
recharge & travers le lit de la riviére est un flux imposé qui est fonction du volume global de chaque crue.
Cette recharge peut mettre trés longtemps avant d’atteindre Paquifére si la couche non saturée est épaisse.
Des méthodes pour estimer ce flux, ainsi que le temps de transit, ont été proposées par Besbes et al. (1978).

10.2.11. Estimation de ’alimentation régionale

Pour une nappe libre, le terme source ¢ représente principalement I’alimentation de I'aquifere. Au §
1.3, nous avons montré comment l'infiltration (I’alimentation) peut étre grossierement estimée & partir de la
précipitation et des données de I’évapotranspiration potentielle au moyen d’un modéle de réservoir simple
représentant la réserve d’eau dans la zone racinaire des plantes. Bien que ce genre de modéle soit trés grossier,
cest le seul qui puisse étre appliqué en pratique a la modélisation régionale de I’eau souterraine. Dans les
modeles de réservoir plus sophistiqués, la vitesse a laquelle I’évapotranspiration retire de ’eau du réservoir
est considérée comme étant fonction de la saturation de celui-ci, ce qui est également le cas de I'infiltration et
du ruissellement. Dans les zones ol le ruissellement est important, il est donc intéressant de pouvoir calculer
simultanément toutes les composantes du bilan des eaux a la surface du sol (ruissellement, infiltration et
évapotranspiration), et de vérifier ensuite ces calculs en modélisant I’écoulement des eaux de surface afin de
comparer I’écoulement calculé & celui que I'on a mesuré aux stations de jaugeage en riviere. Ces modéles
portent le nom de modéles couplés eaux de surface-eaux souterraines. Le couplage prend également en
compte Dinfiltration dans les aquiféres ou le drainage de ceux-ci par les rivieres. De tels modéles ont été
réalisés par Girard et al. (1981) et Ledoux et al. (1984) en utilisant des mailles gigognes carrées aussi bien
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pour aquifere que pour le ruissellement dans la couche de surface. Ce type de mailles convient bien a une
représentation du réseau fluvial par des éléments de petite taille.

Si la zone non saturée entre la surface du sol et ’aquifére n’est pas trop épaisse (par exemple, quelques
meétres), linfiltration sous la zone racinaire est trés rapidement transférée a P’aquifere: la recharge est égale
3 Pinfiltration. Toutefois, si cette zone non saturée est trés épaisse (des dizaines de metres, par exemple),
le retard et ’amortissement seront considérables et la recharge & la surface de l’aquifére sera en fait une
“convolution” de l'infiltration a la surface du sol par une “fonction de transfert”, qui représente ’écoulement
vertical a travers la zone non saturée. On pourrait, en principe, essayer de résoudre ’équation de ’écoulement
non saturé afin de représenter ce transfert, mais cela serait bien trop compliqué, coiteux et difficile (a cause
du manque de données sur les propriétés de la zone non saturée) pour étre utilisable en modélisation régionale
des eaux souterraines.

Besbes et Marsily (1984) ont décrit comment une convolution linéaire simple peut étre estimée a partir
des données de la précipitation et de la piézométrie. Morel-Seytoux (1984) a également montré la relation
entre cette convolution linéaire et la véritable équation non linéaire de I’écoulement non saturé.

10.2.12. Représentation des puits

En modélisation régionale de I’eau souterraine, la dimension d’un puits est généralement beaucoup
trop petite pour qu’il soit possible de le décrire correctement par le maillage d’un modele (par exemple, le
diamétre du puits peut étre de 0,5 m tandis que la taille des mailles est de 200x200 m). Il peut y avoir
souvent plusieurs puits dans une maille donnée.

Dans 1’équation différentielle partielle qui représente ’écoulement dans I’aquifere, le terme puits ¢ pour
un tel puits serait:

7= Qob(z0,%0)

ou Qo est le débit du puits, zo et yo sont des coordonnées du puits, et 6 est la fonction de Dirac au point
(z0, ¥o), c’est-a-dire:

§(z,y) = 00 si (z,y) = (20, ¥0)
6(z,y)=0 si (z,y) # (20, %0)

//6dxdy:1 VY D C(zo,%)
D

Dans la forme discrétisée correspondante de I’équation de I’écoulement, le terme intégré source/puits
est:

Qi = /D' /q dzdy = Qo si q = Qob(zo,y0)

Ainsi, Q; sera la somme algébrique de lintégrale du terme source distribué (qui représente ’alimentation)
et des véritables débits d’écoulement des différents puits dans le maillage.

S’il n’y a qu’un puits, par exemple, dans une maille carrée, il est encore possible d’estimer I'ordre de
grandeur de la charge hydraulique dans le puits a partir de la valeur calculée de la charge au nceud de la
maille. Ce calcul est fondé sur I’expression de Dupuit pour le régime permanent (cf. § 7.3.a).

L’équation de ’écoulement pour la maille I en régime permanent s’écrirait, comme dans (10.2.6):

Y Cij(Hj — H) =, Qi
i

La sommation sur j peut s’étendre aussi bien horizontalement que verticalement dans les systémes
multicouches; Q; est le terme source intégré, y compris le débit d’écoulement ¢;, dans le puits. §’il n’y avait
eu aucun prélevement dans ce puits, la charge calculée H; aurait été donnée par:
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> Ciy(Hj - H)=Qi -
J

Ceci suppose que la charge dans les mailles voisines H; n’est pas modifiée par le terme g;. Autrement dit,
H; — H; est le rabattement supplémentaire causé par le puits qui peut étre calculé par le modéle numérique
entre le centre de la maille I et les mailles voisines J, c’est-a-dire une distance a si a est la taille de la maille
carrée. Ce que nous recherchons, en fait, est le rabattement véritable pour un puits de rayon ry entre ce
puits et les mailles voisines & une distance a. Ceci s’estime par la formule de Dupuit de la maniére suivante:

qi lni

5= 27(’T. L)

ou T; est la transmissivité dans la maille I.
Des deux expressions précédentes, on peut dériver la charge h; dans le puits:

1 a 1
hi=Hi—q¢ | -—In— - =F=—
g (27rT,~ In 0 zj Cij)

ol H; est la charge dans le forage du puits et H; la charge calculée par le modele. Cette expression est
approximée et ne prend pas en compte les pertes quadratiques de charge, qui doivent étre soustraites si elles
sont significatives.

Dans un régime transitoire, la méme expression est utilisée en supposant que le profil logarithmique de
la formule de Dupuit est valable & I’échelle de la maille. Ceci est vrai dés que Pexpression logarithmique de
Jacob peut étre utilisée & la distance a.

10.3. "ELEMENTS TFiIVis

La méthode des éléments finis est une technique puissante et trés flexible pour intégrer une équation
différentielle partielle sur un espace. Elle comporte trois étapes principales:

1) Le domaine est décomposé en un ensemble “d’éléments” qui, en deux dimensions, sont généralement
des triangles ou des quadrilatéres, mais qui peuvent avoir des formes plus complexes.

2) Sur chaque élément, la fonction inconnue h(z,y) est décomposée sur un ensemble de fonctions de
base connues b (z,y) tel que:

m

h(z,y) = Z apbi(z,y)
1

Les inconnues sont alors les coefficients a; dans chaque élément.

3) On écrit une équation intégrale quelconque afin de s’assurer que h(z,y) vérifie approximativement
I’équation différentielle partielle en question ou celle de bilan de masse.

Nous limiterons cette présentation a deux exemples: Dinterpolation linéaire sur des triangles et les
¢léments linéaires isoparamétriques avec la méthode de Galerkin. On trouvera de bonnes descriptions de
cette méthode dans Remson et al. (1971), Strang et Fix (1973), Zienkiewicz (1977), Pinder et Gray (1977),
Mitchell et Wait (1977), Dhatt et Touzot (1981), Wang et Anderson (1982).

10.3.1. Eléments finis linéaires sur des triangles
Nous débuterons par I'’équation de régime permanent (10.2.1). Le domaine est décomposé en un ensemble

d’éléments triangulaires. Soit IJK (Fig. 10.10) un de ces éléments. Sur chaque triangle, la fonction inconnue
h(z,y) est supposée linéaire:

h(z,y) = ao + a1z + azy (10.3.1)
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Les inconnues sont ag,a; et as. Lorsque nous écrivons une équation de bilan, notre premier réflexe est
d’utiliser la forme intégrée (10.2.3) de Péquation de ’écoulement (cf. § 10.2.3.) sur la surface du triangle IJK.
Cependant, cela ne nous ménerait a rien puisqu’une expression linéaire pour h telle que (10.3.1) vérifierait
div(T grad h) = 0 si le tenseur T est constant sur le triangle. Ainsi, I’équation de bilan ne peut jamais étre
vérifiée sur un élément linéaire, & moins que le terme source ¢ = 0. ‘

Nous choisirons plutét un polygone entourant chaque nceud I du maillage. Ces polygones doivent
diviser le domaine, c¢’est-a-dire que ’'union de tous les polygones doit étre égale au domaine lui-méme et leur
intersection étre ¢. En général, on considére I'union des médianes de chaque triangle (Fig. 10.11). Soit Dj
ce polygone et Ty son périmétre. L’équation intégrée de 1’écoulement s’écrit comme dans (10.2.3):

Oh 6h
/' (Tr b—;n,-{-Ty '3;"”) ds = /D/ q dzdy (10.3.2)
Y
K J_‘

X

I

Figure 10.10. Triangle pour des éléments finis linéaires.

K
YL
N 4
I v J

Figure 10.11. Polygone d’intégration pour un maillage d’éléments finis.

Nous supposerons initialement que z et y sont les directions principales du tenseur T dans le triangle
1JK. Soient MO et ON les deux cotés de T'; a I'intérieur de IJK.

1l faut calculer I'intégrale de contour le long de MON. On peut le faire directement, mais étant donné
que h a l'intérieur de IJK est une fonction linéaire des coordonnées, nous savons que div (T grad h) =0,

c’est-a-dire:
Oh oh Oh oh
Te —ne+ T, — d T, —n.+ T, — ds =
-/MON( 32” * 5yny) s+/N1M( i arn T ayny) s=0

Etant donné (10.3.1) et les coordonnées I, J et K, il est plus simple de calculer la seconde intégrale.
Avec de I’algebre tres simple, on trouve:

oh oh 1 1
/1;’1 (T, —a—;nz + Ty -0—y-ny> ds = =Tray(yi — y&) — §Tya2(z,- — z)

2
Oh oh 1 1
‘/1M (Tz —6-;71,_- + Ty '@ﬂy) ds = §T,a1(yj - yi) - §Ty02(1,‘j - :L',‘)

Par conséquent

Oh oh 1 1
/MON (T" e B_yny) ds = 5Teai(y; — ye) = 5Tyaz(z; — &) (10.3.3)
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Au lieu d’employer les inconnues ag, a; et a3 dans (10.3.1), on préfére en général introduire les valeurs

de la charge aux nceuds I, J et K. Ils vérifient:

H; = ao+a1z; + a2y
H; = ao + a1zj + a2y; (10.3.4)
Hy =ag+ a1z + a2yk

La charge 4 un nceud I doit, naturellement, étre la méme pour tous les triangles dont I est le sommet.
En résolvant (10.3.4), nous obtenons:

_ (yi = ye)(Hi = Hj) = (yi — y;)(Hi — Hi)

N @ =) — ) — (@~ 2~ 4y)
4y = (.‘L‘,’ - Ij)(H,‘ - Hk) hae (J:,' - .’Ek)(H,' - HJ)
BT (mi— ) (w - we) = (2 -z ) (Wi — ) (10:35)
et, en introduisant ces valeurs dar_xs (10.3.3):
Oh oh
Joo (T e )
1/2
(zi — xj)(yi —yk) = (zi — e )(yi = yj)
x {[Te(yi — ye)(yj — y&) + Ty(zi — zi)(zj — zx)|(Hi — Hj)
— [Te(yi = y;)(w5 — ve) + Ty(zi — z;)(zj — z))(Hi = Hi)} (10.3.6)

ou

Oh oh
/;40N (Tx 5-x-nx +Ty ggl-ny) ds = C,'j(H,‘ - Hj) +C,'k(H,' - Hk)

Nous retournons a I’équation de bilan (10.3.2) et construisons toute I'intégrale de contour sur I'; en

ajoutant des termes analogues calculés dans chacun des triangles dont I est le sommet. Finalement, nous
avons:

Cij(H; — H;) + Ci(Hi — He) + Ca(Hi = H)) + ... = Q; (10.3.7)
ou Q; est 'intégrale du terme source sur D;.

On peut écrire des équations telles que (10.3.7) pour chaque nceud I ou la charge n’est pas imposée.

Notez que cette expression ressemble beaucoup a (10.2.6), que nous avons obtenue en différences finies
intégrées sur un polygone de forme quelconque. Les différences principales en sont les suivantes:

1) Le domaine d’intégration D; n’est pas la maille élémentaire de ’approximation. Etant donné que
nous avons utilisé ici des éléments triangulaires, D; est constitué par des parties de tous les triangles dont
I est le sommet. Si les valeurs des paramétres (par exemple, T') sont données sur les triangles élémentaires,
alors T varie & Vintérieur de D;, a I'opposé de ce qui est le cas en différences finies.

2) Les différences finies calculent des charges “moyennes” sur un polygone attribué a un nceud central
sans faire d’hypothése sur la forme de la variation de cette charge d’un nceud 4 un autre. Les éléments finis,
au contraire, définissent précisément la variation de la charge & I'intérieur d’un élément - linéairement dans
ce cas. On ne calcule les valeurs aux nceuds que pour des raisons pratiques, mais H est défini partout. La
charge varie continuellement d’un élément triangulaire a un autre.

3) Toutefois, les flux le long du c6té 1J d’un triangle sont discontinus: ils sont différents quand ils sont
estimés dans les deux triangles qui ont IJ en commun. Les éléments finis linéaires ne conservent pas la masse
sur un triangle élémentaire; ceci est le cas uniquement quand il s’agit d’un polygone entourant un nceud.
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Figure 10.12. Conditions aux limites pour un maillage d’éléments finis.

8

X

Figure 10.13. Rotation de ’axe pour prendre en compte 'anisotropie.

- Conditions aux limites

Si la charge est imposée le long d’une limite, les nceuds des triangles se trouvant sur cette limite auront
une charge imposée. On n’écrira pas d’équations telles que (10.3.7) pour ces nceuds.

Si le flux est imposé le long d’un des cotés d’un triangle, par exemple IK (Fig. 10.12), alors les polygones
D; et Dy auront pour cotés IN et NK. Pour le polygone D;, le flux le long de NI sera estimé en utilisant la
condition aux limites imposées, et il sera introduit en tant que terme connu dans I'intégrale de contour totale

de D; dans I’équation (10.3.7). Remarquez que le flux le long de MON sera toujours estimé a l'intérieur de
1JK par (10.3.6) sans aucun changement.

A Popposé des différences finies, la limite doit suivre les cotés des éléments aussi bien pour les conditions
de charges imposées que pour celles de flux imposés.

- Anisotropie

Dans (10.3.6), nous avons supposé que z et y sont des directions principales du tenseur d’anisotropie de
la transmissivité a 'intérieur du triangle IJK. Si cela n’était pas le cas, (10.3.6) serait quand méme applicable,
dans la mesure ol r et y forment maintenant un systéme local de coordonnées a l'intérieur de 1JK, parallele
aux directions principales d’anisotropie.

Soient X,Y le systéme général de coordonnées et I’angle entre les deux. La rotation de ’axe (Fig. 10.13)
donne:

z =Y cosf+Ysinf
y=—Xsinfd+Y cosf (10.3.8)

ce qui peut étre introduit dans (10.3.5). Par exemple, C;; devient:

Cij = T:[(Xk = Xi)sin 6 + (Vi — Yi) cos )]
x [(Xi = X;)sin @ + (Y; — Yi) cos 6]
+ Ty [(Xi = Xi) cos8 + (Y; — Yi)sin 6]
X [(X; — Xg)cosf + (Y; — Yi)sin 6]

ou T; et Ty sont toujours les transmissivités locales dans 'axe local de I’anisotropie. De telles corrections
peuvent étre introduites dans chaque triangle avec, si nécessaire, un angle 4 différent.
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- Régime transitoire

Dans un régime transitoire, il faut ajouter le terme suivant au second membre de (10.3.2) ou de (10.3.7):

Oh
/D. /S Wdrdy (10.3.9)

Il y a deux moyens d’estimer ce terme: la formulation concentrée et la formulation conforme.

- Approximation concentrée

On fait 'hypothése que Oh/0t & lintérieur de D; peut étre approximé par OH;/0t. Si S; est 'intégrale

de S sur D;,
S; =/ /S dxdy
D,

alors, on ajoute le terme S;(0H;/0t) au second membre de (10.3.7). La discrétisation de ce terme peut se

faire exactement comme pour les différences finies; c’est-a-dire, explicitement, implicitement, etc...(cf. §
2.2.6.d).

- Formulation conforme

En réalité, Pexpression linéaire de la charge sur chaque triangle (10.3.1) permet d’estimer (10.3.9) plus
rigoureusement. Soit MONI (Fig. 10.11) la partie de D; a I'intérieur du triangle IJK. Nous pouvons écrire:

h
/ /S Q—d:cdy = // Sijk ﬁ(ao + a1z + azy)dzdy (10.3.10)
MONI ot MONI ot

ol Sijx est le coefficient d’emmagasinement de I’élément IJK. Toutefois, dans (10.3.5), nous avons estimé a,
et a, en tant que fonctions de H;, H; et Hy. Alors, ap peut étre tiré de (10.3.4) comme suit:

ap = Hi — a1zi — a2y (10.3.11)
L’équation (10.3.10) devient:

/ /S éﬁdrdy =Sijk P&/ /f(x,y)d:cdy
MONI ot ot Jmont

H; , 0H
+——6 / / f(z, y)dzdy + —~ / / f”(z,y)dzdy]
ot Jnmoni 0t Jmont

ou f, f' et f” sont des fonctions linéaires de z et y et des coefficients qui dépendent des coordonnées de IJK.
Ces fonctions et leurs intégrales sur MONI peuvent étre estimées analytiquement en utilisant (10.3.5) et
(10.3.11). Ce terme et ses équivalents dans tous les triangles dont I est le sommet seront ajoutés au second
membre de (10.3.7).

En principe, on peut également utiliser les approximations explicites, implicites, de Crank-Nicholson
et de Gear pour résoudre I’équation conforme qui en résulte. Cependant, il ne servirait a rien d’utiliser
’approximation explicite, car on ne peut plus resoudre explicitement pour H,-”'A’ dans le premier membre
comme dans (10.2.12). Chaque équation comprendra maintenant plusieurs inconnues au temps ¢ + At :
H}+At,H;+A',H;+A', etc., et la solution exige, par conséquent, l'inversion de la matrice du systéme a
chaque pas de temps, tout comme dans I’approximation implicite.

Etant donné que les approximations implicites ou de Crank-Nicholson (avec a > 0.5) sont incondition-
nellement stables et n’exigent pas, dans ce cas, davantage de temps ordinateur, on les préfere systématique-
ment & ’approximation explicite dans les éléments finis conformes.

10.3.2. Eléments finis linéaires isoparamétriques avec ’approximation de Galerkin
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a) Elément de base

En deux dimensions, 1’élément de base est un quadrilatere IJKL (Fig. 10.14). Pour les éléments non
linéaires, les cotés de cet élément pourraient représenter des polynémes d’un degré supérieur, par exemple
des paraboles, mais nous limiterons cet exposé aux éléments linéaires dont les cotés sont des droites.

En régle générale, on définit une transformation linéaire du systéme de coordonnées (z,y) pour chaque
élément, de maniére a ce que IJKL devienne un carré ijk! dans le nouveau systeme (£,n) (Fig. 10.14).

Cette transformation est définie par:

z =Ni(€,n)zr + Nj(§,n)zs + Ne(€,n)yk + Ni(€,n)zL

y =Ni(&,m)y1 + N;(E,n)ys + Ne(€,n)yx + Ni(€,n)wL (10.3.12)
. m
J
I i +1 i
- o I .
K k -1 l
L

Figure 10.14. Elément quadrilatére et transformation linéaire dans un carré.

Dans le systeme (£,7), les fonctions N; sont des fonctions bilinéaires, appelées fonctions chapeau:

N; = %(1 +&&)(1 + ) (10.3.13)

Par exemple, pour le sommet #(§; = —1,7; = +1);

Ni= (14661 +)

Cette fonction N; est égale 4 1 dans i et 4 0 dans j, k et I. Elle varie linéairement avec 7 et £ le long des
cotés du carré et bilinéairement a l'intérieur du carré. Dans la figure 10.15, nous avons dessiné la ligne de
contour d’une fonction chapeau autour d’un nceud i dans le plan (€,7). Le nom “chapeau” vient de la forme
de cette fonction.

Quand (€, n) décrit le carré ijkl, il est facile de voir que (z,y) de (10.3.12) décrit IJKL.

b) Fonctions de base

Sur I'élément IJKL, inconnue h(z, y) (ici, la charge) sera approximé par la somme de quatre fonctions
de base bilinéaires:

h(z,y) = HiNi(z, ) + HyN(z,y) + Hx Ni(2,9) + HLNL(z,y) (10.3.14)
ou Hi, ..., Hy seront les valeurs de la charge aux nceuds I, ..., L (les inconnues du probleme) et les fonctions
de base bilinéaires Ny, ..., Ny, seront de nouveau les fonctions chapeau définies ci-dessus, par exemple, Ni(I) =

1,N1(J3) = Ni(K) = Ni(L) = 0, et Nj varie bilinéairement dans z et y. Plus précisément,

Ni(z,y) = Ni(&,m) (10.3.15)
avec (z,y) donnés par (10.3.12) a partir de (£,7)) et N; défini dans (10.3.13).
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c) Equation intégrale

Au lieu d’intégrer Péquation de I’écoulement exactement sur un domaine D; autour de chaque nceud
I, comme nous ’avons fait pour les différences finies intégrées ou pour les éléments finis triangulaires, la
formulation de Galerkin exige l'intégration de cette équation avec un facteur de pondération. En régime
permanent, et en supposant que z et y sont les directions principales d’anisotropie, nous pouvons écrire:

0 oh 0 oh
i (n ) v (7)o

0 0h ) Oh
/D. / Wi(z,y) [-a—r (Tz —a;) + 3y (Ty a—y) - q] dzdy =0 (10.3.16)

ott W; est une fonction de pondération. Autrement dit, I’équation de I’écoulement sera vérifiée “en moyenne”
sur D;, mais en tant que moyenne pondérée. On peut utiliser plusieurs types de fonctions de pondération,
mais dans la formulation de Galerkin, les fonctions de pondération W; sont encore les mémes fonctions
chapeau que celles utilisées comme fonction de base, et le domaine d’intégration D; est composé des quatre
quadrilatéres entourant chaque nceud. On peut écrire des équations telles que (10.3.16) pour chaque nceud
du maillage ou la charge h n’est pas imposée.

Remarquez qu’avec la formulation de Galerkin, D; n’est plus un polygone sur lequel le bilan de masse
est vérifié. On peut, cependant, démontrer que 1) le bilan de masse est globalement vérifié pour la totalité
du domaine, et 2) autour de chaque nceud, on peut trouver un domaine compris dans D; pour lequel le bilan
de masse est vérifié. Ces domaines entourant chaque nceud départagent le domaine total, mais leur forme
dépend en fait de la valeur de la charge aux nceuds (Goblet, 1981) et ne peut étre définie a prior:.

puis

d) Calcul de I'intégrale

Nous pouvons intégrer (10.3.16) par parties. En substituant Ny a ¥, nous trouvons:

Oh 0h ON;.. 8h ONp,. Gh
/F' Ni(z,y) (TI axnx+Ty Byny> ds—/D,-/ (—6—;Tr—a—x+ 5y Ty8_y> dzdy

D:

ol n; et n, sont les cosinus de direction de la normale extérieure de T';. Toutefois, par définition de la
fonction chapeau, Ny = 0 sur T;, de fagon & ce que D'intégrale de contour s’annule pour tous les nceuds ¢
Uintérieur du domaine. Nous verrons plus tard comment traiter les conditions aux limites. Maintenant, il
faut calculer séparément les intégrales sur D; pour chaque quadrilatére dont I est le nceud. Ensuite, nous
utiliserons (10.3.14) pour la charge dans chaque quadrilatere. Par exemple, pour IJKL, le premier membre

de (10.3.17) deviendrait:
0Ny, 8N1  ONy,, ONi
-H — Ty —+ —Ty, — 1|1
! /-/IJKL[&ET Oz * ayTy 63/] *dy

ONy.. ONy ONp,. ON;
—H Bz 7 0z 8y Bu 9.
! -//UKL [ Oz % gz T dy Ty dy ] dzdy (10.3.18)

— Hk(similar term) — Hy(similar term)

Enfin, (10.3.17) prendra la forme:

~ —CiHi- CyHj — ...(généralement 9 termes) = Q1 (10.3.19)

ol Q est I'intégrale pondérée du terme source sur D;. Notez que C] est la somme des intégrales données dans
(10.3.18) pour les quatre quadrilatéres tels que IJKL. Il y a plusieurs méthodes pour calculer ces intégrales,
qui ne sont que des fonctions des coordonnées et des transmissivités directionnelles.
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- Intégration analytigue: Il est alors utile d’intégrer dans le systéme de coordonnées (€,n). Nous ferons
’hypothése que T et T, sont constants sur chacun des quadrilatéres. Il nous faut donc estimer des intégrales
telles que:

ON1 0N 1L GN, 06 ON; 8n)\ (9N; 8€ N dn
//IJKLF“— 5z 1Y _/ / (36 3z " Gy 6:) ( 8¢ 81:+ on Oz )d HJ)dedn

ol det(J) est le déterminant de la matrice jacobienne du changement de coordonnées de (z,y) a (€,7):

8z Yy

_|% 3
det(J) = l 35 Q.SL
n 8

Ces dérivées
173 ¢ Oz
peuvent étre calculées explicitement & partir de (10.3.12) et (10.3.13) et par inversion de la matrice de Jacob.

Intégration numérigue: Nous utiliserons une intégration gaussienne de la forme:

J[ eemican=3 rc0n)
ijkl n=1

Les points M, et les poids A, sont les points de Gauss et les poids de ijkl, et ils sont connus. Le nombre de
points qu’il faut utiliser est fonction du degré de I’expression polynémiale G: avec m points, I'intégration est
exacte pour une expression polynomiale de degré 2m — 1. En général, on utilise quatre points (Zienkiewicz,
1977; Dhatt et Touzot, 1981).

Pour quatre points, on peut prendre:

(N &m) = (1, £1/V3,£1//3)

ou, pour sept points:

8 20 14 20 3 \/§
A =[= == il b 2 2
( ,6,m) [7,0,0] et [63,0,:!: 15] et [36,:t\/;,:t 5]

Anisotropie: Si les directions principales d’anisotropie (z,y) du tenseur de transmissivité T a I'intérieur de
IJKL ne forment pas le vrai systéme de coordonnées (X,Y) du domaine global, il faut d’abord transformer

le systéme (X,Y) localement par une rotation afin d’obtenir (z,y), exactement comme pour les éléments
triangulaires (cf. § 10.3.8).

Eléments miztes: 1] est également possible d’utiliser simultanément des éléments triangulaires linéaires et
des quadrilatéres bilinéaires dans 'approximation de Galerkin, ce qui rend le maillage plus flexible. Les
fonctions chapeau qu’il faut utiliser pour un triangle sont alors (1 — £ — 1), (€) et (n) si les trois pointes du
triangle sont situées dans (0,0), (0,1) et (1,0) dans le diagramme de (€, 7) (Fig. 10.16).

n

Figure 10.16. Triangle dans le systeme (¢, 7).
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Si I'on effectue une intégration numérique sur le triangle, les points et les poids de Gauss sont, pour
(X&)

trois points:

111, .1 1. .11
2221 (=0, =) (=, =,0
[6)2,2],[6, )2]1[612 ]
quatre points:
[ 27 1 l]_[25 1 1]‘[25 3 1][§ 1§]
96,3°3"'96°5°5'96°5°57°96° 5’5
Conditions auz limites: Nous avons vu que, pour une limite & charge imposée, la charge sera connue dans
les nceuds qui se trouvent sur cette limite, et que I'on n’écrira pas d’équations pour ceux-ci. Pour une limite
a flux imposé, l'intégrale de contour de (10.3.17) n’est pas nulle, mais on peut facilement la calculer si ’on

connait le flux sur la limite et la fonction chapeau Ny. Ensuite, ce terme étant connu, il peut étre transféré
au second membre de (10.3.19).

Régime transitoire: En régime transitoire, on ajoute le terme SO0h/0t & l'intérieur des crochets de (10.3.16).
Ensuite, il faut estimer dans (10.3.17) ou dans (10.3.19) des termes tels que:

/ /N15 @drdy (10.3.20)
D, ot

Ceci peut se faire de deux fagons, comme pour les éléments triangulaires. On peut soit utiliser la formu-
lation conforme, a savoir substituer 3 ; Hy Ny (10.3.14) & h dans (10.3.20), et ensuite estimer les intégrales de
NiS sur chacun des quadrilatéres, soit utiliser la formulation concentrée, c’est-a-dire supposer que §H;/dt
peut étre pris pour représenter O/t & lintérieur de I'intégrale (voir Neuman, 1975b).

Cette approximation concentrée a I’avantage de permettre I'emploi de Dexpression explicite. Elle est
cependant moins exacte que la formulation conforme.

Assemblage de la matrice: Au lieu de calculer successivement, pour chaque nceud I, les coefficients C;, Cj, . ..
de chague ligne de la matrice globale du systéme (10.3.11) ou (10.3.19), il est plus efficace de déterminer au
préalable tous ces coefficients pour chaque élément du maillage en calculant successivement, pour chacun des
éléments, les intégrales données dans (10.3.18). Ceci étant fait, les coefficients pour chaque neeud I (chaque
ligne de la matrice) sont calculés en ajoutant le terme approprié de chaque élément dont le sommet est I.
Ceci s’appelle I’assemblage de la matrice du systeme.

10.3.3. Eléments d’ordre supérieur

A la place des fonctions de base linéaires ou bilinéaires, on peut se servir de fonctions d’ordre supérieur
en éléments finis afin d’augmenter la précision et/ou diminuer la taille des mailles. 1l existe, au moins, deux
maniéres de le faire:

1) On peut utiliser, comme fonctions de base sur les éléments, des polynomes d’ordre supérieur (par
exemple, des carrés ou des cubes), qui accroitront le nombre d’inconnues sur chaque élément. On aura donc
davantage de nceuds sur chaque élément (par exemple, neuf nceuds sur un quadrilatére - les quatre coins,
quatre nceuds au milieu de chaque c6té et un nceud au centre pour les fonctions quadratiques - ou seize
neeuds pour une fonction cutique). Toutefois, avec de tels éléments, la fonction d’interpolation n’a toujours
pas de dérivée continue d’un élément a I'autre.

2) 1l est possible d’utiliser des éléments hermitiens. Ainsi, on n’augmente pas le nombre de nceuds
par élément, mais on considére, en revanche, que h et ses dérivées aux nceuds sont des inconnues. Si nous
prenons des polynémes cubiques d’Hermite, h est continu, h/0n est toujours discontinu, mais dh/0z et
&h /8y sont identiques & un nceud dans chaque quadrilatére; si les €léments sont rectangulaires, Oh/0z et
Oh/8y sont continus. Si nous choisissons des polynémes d’Hermite d’ordre supérieur, nous pouvons obtenir
que les dérivées du premier et deuxiéme ordre soient continues. Ceci s’est avéré trés efficace pour résoudre
I’équation de transfert (cf. § 10.5.3); voir Van Genuchten (1977).

Toutes ces techniques sont décrites par Pinder et Gray (1977).
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FORMULES PERMETTANT D’ESTIMER L’EVAPORATION POTENTIELLE

1. Formule de Thornthwaite

L’évapotranspiration potentielle (ETP), mensuelle ou décadaire est donnée par:

ETP = 16 (?) F(\)

en millimétres
= température moyenne mesurée sous abri de la période considérée, °C, ETP en millimétres/mois
= 6,75 10=713 - 7,71 107312+ 0,49239
= indice thermique annuel, fomme de douze indices thermiques mensuels i
o\ 1814 -7 .
(g) + /I/ F9Ax 10 ¢+

= coefficient de correction, fonction de la latitude et du mois, donné par la table, page

2. Formules de Turc

Turc préconise des formules différentes selon que 'humidité relative moyenne est supérieure ou in-

férieure a 50%:

- Si U > 50% (cas habituel des régions tempérées)

ETP =0, 13—@——(Rg + 50)

mm/10 jours o115
- SiUnm < 50%
© 50 — U

>

9a

température moyenne, mesurée sous abri, de la période considérée (°C)
radiation solaire globale

h
Ry ~1,,(0,18+0,62—)

durée réelle d’insolation
durée maximale d’insolation possible (durée astronomique du jour)

radiation solaire directe en I'absence d’atmosphére I, et H sont tabulés en fonction de la latitude et
de la date, page
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COEFFICIENT DE CORRECTION F()) EN FONCTION DE LA LATITUDE ET DU MOIS
Formule de Thornthwaite, d’aprés Brochet et Gerbier (1968)

Lat. N J F M A M J J A S (o] D
0 1.04 .94 1.04 1.01 1.04 1.01 1.04 1.04 1.01 1.04 1.01 1.04
S 1.02 .93 1.03 1.02 1.06 1.03 1.06 1.05 1.01 1.03 1.02
10 1.00 .91 1.03 1.03 1.08 1.06 1.08 1.07 1.02 1.02 .98 .99
15 .97 .91 1.03 1.04 1.11 1.08 1.12 1.08 1.02 1.01 .95 .97
20 .95 .90 1.03 1.05 1.13 1.11 1.14 1.11 1.02 1.00 .93 .94
25 .93 .89 1.03 1.06 1.15 1.14 1.17 1.12 1.02 .99 .91 .91
26 .92 .88 1.03 1.06 1.15 1.15 1.17 1.12 1.02 .99 .91 .91
27 .92 .88 1.03 1.07 1.16 1.15 1.18 1.13 1.02 .99 .90 .90
28 .91 .88 1.03 1.07 1.16 1.16 1.18 1.13 1.02 .98 .90 .90
29 .91 .87 1.03 1.07 1.17 1.16 1.19 1.13 1.03 .98 .90 .89

30 .90 .87 1.03 1.08 1.18 1.17 1.20 1.14 1.03 .98 .89 .88
31 .90 .87 1.03 1.08 1.18 1.18 1.20 1.14 1.03 .98 .89 .88
32 .89 .86 1.03 1.08 1.19 1.19 1.21 1.15 1.03 .98 .88 .87
33 .88 .86 1.03 1.09 1.19 1.20 1.22 1.15 1.03 .97 .88 .86
34 .88 .85 1.03 1.09 1.20 1.20 1.22 1.16 1.03 .97 .87 .86
35 .87 .85 1.03 1.09 1.21 1.21 1.23 1.16 1.03 .97 .86 .85
36 .87 .85 1.03 1.10 1.21 1.22 1.24 1.16 1.03 .97 .86 .84
37 .86 .84 1.03 1.10 1.22 1.23 1.25 1.17 1.03 .97 .85 .83
38 .85 .84 1.03 1.10 1.23 1.24 1.25 1.17 1.04 .96 .84 .83
39 .85 .84 1.03 1.11 1.23 1.24 1.26 1.18 1.04 .96 .84 .82
40 .84 .83 1.03 1.11 1.24 1.25 1.27 1.18 1.04 .96 .83 .81
41 .83 .83 1.03 1.11 1.25 1.26 1.27 1.19 1.04 .96 .82 .80
42 .82 .83 1.03 1.12 1.26 1.27 1.28 1.19 1.04 .95 .82 .79
43 .81 .82 1.02 1.12 1.26 1.28 1.29 1.20 1.04 .95 .81 .77
44 .81 .82 1.02 1.13 1.27 1.29 1.30 1.20 1.04 .95 .80 .76
45 .80 .81 1.02 1.13 1.28 . 1.29 1.31 1.21 1.04 .94 .79 .75
46 .79 .81 1.02 1.13 1.29 1.31 1.32 1.22 1.04 .94 .79 .74
47 7 .80 1.02 1.14 1.30 1.32 1.33 1.22 1.04 .93 .78 .73
48 .76 .80 1.02 1.14 1.31 1.33 1.34 1.23 1.05 .93 17 .72
49 .75 .79 1.02 1.14 1.32 1.34 1.35 1.24 1.05 .93 .76 .71
50 T4 .78 1.02 1.15 1.33 1.36 1.37 1.25 1.06 .92 .76 .70

Lat. S
S 1.06 .95 1.04 1.00 1.02 .99 1.02 1.03 1.00 1.05 1.03 1.06
10 1.08 .97 1.05 .99 1.01 .96 1.00 1.01 1.00 1.06 1.05 1.10
15 1.12 .98 1.05 .98 .98 .94 .97 1.00 1.00 1.07 1.07 1.12
20 1.14 1.00 1.05 .97 .96 .91 .95 .99 1.00 1.08 1.09 1.15
25 1.17 1.01 1.05 .96 .94 .88 .93 .98 1.00 1.10 1.11 1.18
30 1.20 1.03 1.06 .95 .92 .85 .90 .96 1.00 1.12 1.14 1.21
35 1.23 1.04 1.06 .94 .89 .82 .87 .94 1.00 1.13 1.17 1.25
40 1.27 1.06 1.07 .93 .86 .78 .84 .92 1.00 1.15 1.20 1.28
42 1.28 1.07 1.07 .92 .85 .76 .82 .92 1.00 1.16 1.22 1.31 4
44 1.30 1.08 1.07 .92 .83 .74 .81 .91 .99 1.17 1.23 1.33
46 1.32 1.10 1.07 .91 .82 .72 .79 .90 .99 1.17 1.25 1.35

43 1.34 1.11 1.08 .90 .80 .70 .76 .89 .99 1.18 1.27 1.37
50 1.37 1.12 1.08 .89 77 .67 .74 .88 .99 1.19 1.29 1.41




218 - Annexe 1 -

3. Formule de Penman

_1RER
-7 F'o a
L1+T

chaleur latente d’évaporation de P'eau (59 cal/cm? pour 1 mm d’eau équivalente)
rayonnement net, évalué par la formule:

Rn = I,,(1-a)(0,18 + 0,62 %) — 064(0,56 — 0,08\/€)(0,10 + 0,94)

pouvoir évaporant de air = (e, — €)0.26(1 + 0.4V)

constance psychrométrique (y = 0,65)

albedo de la surface évaporante (en général, a = 0,25)

radiation solaire directe en ’absence d’atmospheére

durée réelle d’insolation

durée astronomique du jour

température de 1’air sous abri (°K)

1,19 107 cal/cm? jour.°K

tension de la vapeur d’eau mesurée sous abri, en mb

tension maximale de la vapeur d’eau pour la température § en mb

vitesse moyenne du vent mesurée a 10 m au-dessus de la surface évaporante (m/s)
pente de la courbe de tension maximale de la vapeur d’eau

o
3
|

i

i n

<éomqeam:-?~n~2£q

X

6
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VALEURS MENSUELLES DE J,, EN PETITES CALORIES PAR
CM? DE SURFACE HORIZONTALE ET PAR JOUR.
d’aprés Brochet et Gerbier, 1968)

Latitude Nord 30° 40° 50° 60°
Janvier 508 364 222 87,5
Février 624 495 360 215
Mars 764 673 562 432
Avril 880 833 764 676
Mai 950 944 920 880
Juin 972 985 983 970
Juillet 955 958 938 908
Aout 891 858 800 728
Septembre 788 710 607 487
Octobre 658 536 404 262
Novembre 528 390 246 111
Décembre 469 323 180 59,5

DUREE ASTRONOMIQUE DU JOUR H
VALEURS MENSUELLES MOYENNES EN HEURES PAR JOUR
(d’aprés Brochet et Gerbier, 1968)

Latitude Nord 30° 40° 50° 60°
Janvier (31) 10.45 9.71 8.58 6.78
Février (28 1/4) 11.09 10.64 10.07 9.11
Mars (31) 12.00 11.96 11.90 11.81
Avril (30) 12.90 13.26 13.77 14.61
Mai (31) 13.71 14.39 15.46 17.18
Juin (30) 14.07 14.96 16.33 18.73
Juillet (31) 13.85 14.68 15.86 17.97
Aout (31) 13.21 13.72 14.49 15.58
Septembre (30) 12.36 12.46 12.63 12.89
Octobre (31) 11.45 11.15 10.77 10.14
Novembre (30) 10.67 10.00 9.08 7.58
Décembre (31) 10.23 9.39 8.15 6.30
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GRANDEURS USUELLES, VALEURS ET UNITES

1. UNITES DE MESURE DU SYSTEME INTERNATIONAL D’UNITES (SI)

1.1. Unités de base

Elles sont au nombre de 7
le métre, unité de longueur, m
le kilogramme, unité de masse, kg
la seconde, unité de temps, s
I’ampere, unité d'intensité de courant électrique, A
le kelvin, unité de température, K
le candela, unité d’intensité lumineuse, cd
le mole, unité de quantité de matiére, mol

Les préfixes SI sont les suivants:

Préfixe Symbole Facteur par lequel I'unité est multipliée
exa E 1 000 000 000 000 000 000 = 108
peta P 1 000 000 000 000 000 = 10%%
tera T 1 000 000 000 000 = 102
giga G 1 000 000 000 =10°
mega M 1 000 000 =10°
kilo k 1 000 =103
hecto h 100 =102
deca da 10 =10
deci d 0,1 =101
centi ¢ 0,01 =10-2
milli m 0,001 = 1073
micron u 0,000 001 =10"°
nano n 0,000 000 001 =10"°
pico p 0 000 000 000 001 = 10712
femto f 0 000 000 000 000 001 =10"1
atto a 0 000 000 000 000 000 001 = 10713

Ces préfixes s’accolent aux symboles de base. Exemple: kA, kilo ampére.

1.2. Unités géométriques

Longueur: le m et ses dérivés (km, etc ...)
On utilise le micron, u: 1078 m
’Angstrém, A: 10-10
Unités anglo-saxonnes:



Aire:

Volume:

Angle plan:

Angle solide:
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le pied, ft: 0,3048 m
le mile: 1,609 103 m

le m? et ses dérivés
On utilise aussi I’hectare, ha: 10.000 m?
are, a: 100 m?
Unités anglo-saxonnes:
ft2: 9,29 102 m?
acre: 4,047 10% m?

le m3 et ses dérivés
Le litre (0,001 m®) ne doit pas étre employé au lieu du dm® quand il s’agit
de résultats de précision.
Unités anglo-saxonnes:
ft3: 2,832 1072 m3
US gal: 3,785 1073m?
UK gal: 4,546 103 m3

le radian (rad)

‘Le degré vaut == rad

i80

Le grade vaut 200 rad

le stéradian (sr). C’est I’angle d’un solide qui, ayant son sommet au centre

d’une spheére, découpe sur la surface de cette sphére une aire égale a celle
b

d’un carré ayant pour coté le rayon de la sphére.

1.3. Unités de masse et de matiére

Masse:

Masse volumique:

Quantité de matiére:

Concentration:

le kilogramme (kg).
La tonne, t, vaut 1.000 kg
Le quintal, q, vaut 100 kg
Unités anglo-saxonnes:
livre, 1b: 0,4536 kg
ton (long), tn.l: 1,016 103 kg
ton (short), tn.s: 0,907 103 kg

le kg/m3

la mole, mol: c’est la quantité de matiére d’un systéme contenant autant
d’entités élémentaires qu’il y a d’atomes dans 0,012 kg de carbone 12 (la
nature des entités élémentaires doit étre spécifiée).

la mole par métre cube, mol/m?
On utilise aussi des concentrations volumiques en kg/m3 et des concentra-
tions massiques en kg/kg.

1.4. Unités mécaniques

Vitesse:
Accélération:
Vitesse angulaire:

Fréquence:

m/s. En navigation, 1 neeud= 0,514444 m/s
m/s?. L’accélération de la pesanteur est g = 9,80665 m/s?
rad/s

le hertz, Hz, phénoméne dont la période est de 1 seconde.
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Force:

Moment d’une force:

Conlrainte et pression:
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le newton, N. C’est la force qui communique a un corps ayant masse de 1
kg une accélération de 1 m/s2.

Dimension: [M LT~?)

La dyne vaut 10~ newton.

La gravité engendre, sur une masse de 1 kg, une force de 9,80665 newton.

metre.newton, ou newton.metre, N.m.

le pascal, Pa, engendré par une force de 1 newton par m?
Dimension: [M L™1T?]

On utilise plus fréquemment le mégapascal, MPa, soit 10° Pa.
Le bar: 10° Pa

Le milibar: _102 Pa

1 kg/cm? = 9,81 10* Pa

Il faut proscrire ’atmosphére standard = 1,0133 bar = 1,0133 10° Pa

Viscosité dynamique pu:

le mm de mercure = 1,33322 10? Pa

le m d’eau a 4°C = 9,80638 10 Pa

la dyne/cm? = 0,1 Pa

le psi (pound per square inch, unité anglo-saxonne) = 6,895 10* Pa

le pascal-seconde, Pas
Dimension [ML~1T"1]
La poise vaut 0,1 Pas

Viscosité cinématique p/p: le m?/s

1.5 Unités énergétiques

Travail ou quantité de chaleur:

Puissance:

Température thermodynamique:

Conductivité thermique A:

Capacité calorifique massique

Le stokes vaut 107% m?/s

le joule, J
C’est le travail d’une force de 1 newton dont le point d’application se
déplace de 1 m.
Dimension: [M L>T~?)
L’erg vaut 10=7 J

Le kW.h vaut 3,6 105 J
La calorie (petite) = 4,185 J, c’est la quantité de chaleur nécessaire pour
élever 1 g d’eau de 1°C

La kilocarie (ou grande calorie) = 4,185 10° J
La thermie (103 kilocalories) = 4,185 10° J

La BTU (British Thermal Unit) = 1,055 10° J

le watt, W, soit 1 J/s.

Dimension: [ML?T~3]

kW = 10° W; MW = 106 W; GW = 10° W
Le cheval-vapeur = 736 W

Lerg/s = 107 W

La BTU/s = 1,055 103> W

le kelvin, K

Le degré Celsius, °C a comme origine 273,15 K
le W/m K,

Dimension [AM LT 3K 1]

Le kcal/sm°C = 4,18 13 W/m K

(chaleur massique), ¢:
Le J/kg K, dimension [L*T?K 1]
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Capacité calorifiqgue volumique

Diffusivité thermique A/pc:

1.6. Unités électriques
Intensité de courant électrique:
Quantité d’électricité:

Différence de potentiel:

Résistance électrique:

Capacité électrique:

Inductance électrique:

Fluz magnétique:

Induction magnétique:

Force magnétomotrice:

Intensité du champ magnétique:

1.7. Unités radiologiques

Activité radionucléaire:

Le kcal/kg®C = 4,18 10° J/m® K

(chaleur volumique ou spécifique), pe:
Le J/m3 K, dimension [ML™1T-2K 1]
Le kcal/m3°C = 4,18 103 J/kg K

le m?/s, dimension [L2T 1]

Pampére, A.

le coulomb, C.

C’est la quantité d’électricité transportée en une seconde par un courant
d’1 ampere.

le volt, V.
C’est la différence de potentiel qui dissipe une puissance de 1 W pour
un courant constant d’1 A.

I’'ohm, Q.

C’est la résistance d’un conducteur ou circule 1 A sous une d de p de
1 V. Le siemens, S, est la conductance (inverse de la résistance) d’un
conducteur de résistance 1 Q.

le farad, F.

C’est la capacité d’un condensateur qui se charge de 1C sous une d de p
de 1 V.

le henry, H.

C’est I'inductance électrique d’un circuit fermé dans lequel une différence
de potentiel de 1 V est produite, lorsque le courant électrique qui par-
court le circuit varie uniformément a raison de 1 A/s.

le weber, Wb.
11 produit une d de p de 1 V a travers un circuit d’une seule spire si on
Pameéne a zéro en 1 seconde par décroissance uniforme.

le telsa, T.
C’est 'induction magnétique uniforme qui, répartie normalement sur une

surface plane de 1 m?, produit a travers cette surface un flux magnétique
total de 1 Whb.

I’ampere, A.
C’est la force magnétomotrice correspondant a un courant de 1 A dans
une seule spire.

Ampére par métre, A/m.

C’est I'intensité du champ magnétique créé au centre d’un circuit de 1 m
de diametre par le passage dans le circuit d’un courant de 1 A, le circuit
étant constitué par un fil conducteur de section négligeable.

le becquerel, Bq.
Il correspond & une désintégration par seconde d’un corps radioactif.
Le curie, Ci, vaut 37 GBq (gigabecquerel).



224

Quantité de rauonnement X ou 7y:
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le coulomb par kilogramme, C/kg.

C’est la quantité de rayonnement X ou v telle que I’émission corpus-
culaire qui lui est associée dans 1 kg d’air produit dans Pair des ions
transportant une quantité d’électricité (de I’'un ou I'autre signe) égale a
1 coulomb.

Le roentgen vaut 2,58 10~* C/kg.

Dose absorbée de rayonnement 1onisant:

Dose biologique efficace:

1.8. Unités optiques

Intensité lumineuse:

Luminance:

Fluz lumineur:

Eclairement:

Vergence des systémes opliques:

le gray, Gy.
1l correspond & une énergie absorbée égale a 1 J /kg.
Le rad vaut 0,01 Gy.

le sievert, Sv.

C’est la dose engendrée par un rayonnement ionisant dont ’effet est égal
a celui d’un rayonnement X ou v de 200 a 250 kV.

Le rad vaut 0,01 Sv.

le candela, cd.
C’est 'intensité lumineuse, dans une direction donnée, d’une source qui
émet un rayonnement monochromatique de fréquence 540 terahertz, et

dont I'intensité énergétique dans cette direction est de 1/683 Watt par
stéradian. '

Candela par metre carré, cd/m?. C’est la luminance d’une source de 1
m? de surface, émission dont I'intensité lumineuse est de 1 cd.
Le stilb, sb, vaut 10* cd/m?.

le lumen, Im.

C’est le flux lumineux émis dans I’angle solide d’l stéradian par une
source ponctuelle uniforme placée au sommet de I’angle solide et ayant
une intensité lumineuse de 1 cd.

le lux, Ix.

C’est 1’éclairement d’une surface qui regoit normalement, d’une maniere
uniformément répartie, le flux de 1 Im/m?.

la dioptrie, 6.

C’est celle d’un systéeme optique dont la distance focale est de 1 m dans
un milieu dont I'indice de réfraction est de 1.
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2. VALEUR DES GRANDEURS USUELLES EN HYDROGEOLOGIE
2.1. Propriétés de 1’eau pure
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Q| w ) O —~ o 0 v o | Hw |wEl Qo 3 E 3
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| & = < >3 | =2 O A O< | E-wlOoPyg Ln |0 a <
0 9.805 999.8 1.781 1.785 2500.3 0.61 5.098 2.02 -68 4217.4 0.564 13.4
5 9.807 1000.0 1.518 1.519 2488.6 0.87 4.928 2.06 16
10 9.804 999.7 1.307 1.306 2476.9 1.23 4.789 2.10 88 4191.9 0.578 13.8
15 9.798 999.1 1.139 1.139 2465.1 1.70 4.678 2.15 151
20 9.789 998.2 1.002 1.003 2453.0 2.34 4.591 2.18 207 4181.6 0.598 14.2
25 9.777 997.0 0.890 0.893 2441.3 3.17 4.524 2.22 257
30 9.764 995.7 0.798 0.800 2429.6 4.24 4.475 2.25 303 4178.2 0.607 14.6
40 9.730 992.2 0.653 0.658 2405.7 7.38 4.422 2.28 385 4178.3 0.628 15.2
50 9.689 988.0 0.547 0.553 2381.8 12.33 4.417 2.29 458 4180.4
60 9.642 983.2 0.466 0.474 2357.6 19.92 4.450 2.28 523 4184.1 0.652 15.8
70 9.589 977.8 0.404 0.413 2333.3 31.16 4.515 2.25 584 4189.3
80 9.530 971.8 0.354 0.364 2308.2 47.34 4.610 2.20 641 4196.1 0.669 16.4
90 9.466 965.3 0.315 0.326 2282.6 70.10 4.734 2.14 696 4204.8
100 9.399 958.4 0.282 0.294 2256.7 101.33 4.890 2.07 750 4215.7 0.671 16.6
2.2. Propriétés de la glace a -5°C
Masse volumique p = 917 kg/m?; chaleur latente de fusion: 334.10° J/kg
Chaleur spécifique ¢ = 2075 J/kg®C; conductivité thermique
A 2.3 W/m°C.
2.3. Propriétés de ’eau salée (NaCl)
Eau de mer a 34°/,,
Température Masse volumique Chaleur spécifique Viscosité cinématique
°C p kg/m? c.J/kg°C v,10%v.m?/s
0 1027.32 3989 1.8
5 1026.91 3992 1.6
10 1026.19 3995 1.4
15 1025.22 3997 1.2
20 1024.02 4000 1.1
25 1022.61 4002 0.94
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Concentration Masse de NaCl par masse Masse volumique idem Chaleur
en Nacl de solution & 20°C de la solution spécifique
par kg/km?3 % a 15°C kg/m3 420°C | a420°C.J/kg°C

0 0 999.13 998.23 4182

10 0.995 1006.30 1005.30 4127

20 1.976 1013.39 1012.29 4075

30 2.943 1020.41 1019.22 4024

40 3.898 1027.35 1026.07 3975

50 4.841 1034.25 1032.88 3929

60 5.772 1041.05 1039.60 3884

70 6.690 1047.83 1046.32 3841




	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

