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Abstract

Most people in sub-Saharan Africa still lack access to electricity, despite rural electrifi-
cation being a policy priority. We provide evidence that high transaction costs, partic-
ularly transportation expenses to access mobile money agents for bill payments, are
a key friction for rural households. In rural Togo, these costs account for 28% of so-
lar electricity-related expenditures, rising to 43% in more remote areas. To assess the
impact of transaction costs on policy outcomes, we analyze the staggered rollout of
two nationwide policies in Togo in 2019: a solar home system subsidy and an expan-
sion of mobile money agents. The subsidy, which nearly halves electricity prices, more
than doubles adoption rates. However, the effects vary significantly: households with
lower transaction costs—those with direct access to mobile money agents—adopt at
much higher rates and decrease the number of payments they make in response to the
price reduction. The mobile money agent expansion led to nearly a threefold increase
in adoption, an effect similar to that of the subsidy. By reducing transaction costs,
these policies enable bulk purchases and lessen the need for frequent payments. Our
findings highlight the complementary roles of subsidies and financial inclusion in im-
proving rural electrification and access to essential services.
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1 Introduction

Nearly 800 million people still lack access to electricity, predominantly in rural areas of
South Asia and sub-Saharan Africa (International Energy Agency, 2022). This situation
has prompted significant investment in electrification from governments and develop-
ment institutions. However, recent academic studies suggest that demand for electricity
remains limited at current prices in lower-income rural areas (Lee et al., 2020b; Grimm
et al., 2020; Burlig and Preonas, 2022). This disparity presents a potential puzzle: low
estimated demand coincides with high public investment.

In this paper, we explore a key friction that may contribute to this puzzle and weaken
policy effectiveness. We argue that rural households, often liquidity-constrained, face
significant transaction costs—primarily transportation expenses to pay bills—which hin-
der their ability to afford services. Our analysis focuses on solar electrification, a recent
and growing trend in global electrification efforts (Burgess et al., 2023; Lang, 2024b).

We examine two nationwide policies in Togo that target electricity costs in distinct
ways—through price subsidization and transaction cost reduction—and present evidence
that transaction costs are substantial, suppress electricity demand, and impede electrifi-
cation efforts. In doing so, we examine whether and how policies targeting financial
inclusion can complement electrification efforts. We conduct this study in rural Togo,
where electricity access remains among the lowest globally (Government of Togo, 2016).
We combine proprietary customer-level data from a large solar provider in Togo with
government and survey data, and exploit the scattered rollout of two government poli-
cies implemented in 2019: a subsidy program for solar electricity and a major expansion
of mobile money agents.

First, the “CIZO” policy, launched in early 2019, aims to achieve universal electricity
access by 2030, with nearly half of newly electrified households using off-grid solutions.
“CIZO” is one of the first demand-side subsidy programs for solar in Sub-Saharan Africa,1

offering a uniform price subsidy ranging from 19% to 44% of the monthly cost, depending
on the SHS kit.2 The subsidy was phased in from March to June 2019 across three groups
of districts, enabling an event-study analysis to causally measure the intention-to-treat
(ITT) impact on adoption.

Second, the Togolese government, in partnership with the major mobile operators,

1Other African countries have subsidized Solar Home Systems (SHS), but have typically focused on
the supply side by providing financing to service providers to reduce the cost of reaching low-income
households (e.g., Fonds Mwinda in the DRC and Endev in Rwanda).

2The majority of rural customers select the entry-level kit, which saw a 44% price reduction and includes
three light bulbs and a phone charger.
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subsequently initiated a nationwide campaign to recruit and train mobile money agents
in remote villages, called the “granular agent network” policy, rolled out in phases. This
policy aims to enhance financial inclusion—still limited in Togo, as in many similar con-
texts (Suri, 2017)—by directly reducing transaction costs for households far from mobile
money agents, thereby facilitating electricity payments. We interpret these two policies as
targeting both the price of electricity and the transaction costs of making payments—two
key factors that potentially influence electricity demand.

This study focuses on solar electrification, an increasingly prominent electrification
method discussed in both policy and academic circles (Aklin et al., 2018; Abdullah and
Jeanty, 2011; Grimm et al., 2020; World Bank, 2020; Burgess et al., 2023; Lang, 2024a). In
Togo, as in most of Africa, the high costs of expanding the grid into rural areas limit elec-
tricity access. However, the declining cost of solar technology offers a viable alternative
for electrifying rural households. By 2040, 70% of rural Africans gaining electricity are
expected to do so via off-grid solutions (Africa Progress Panel, 2017).3 Despite the afford-
ability of solar, upfront SHS costs remain high for low-income families. “Pay-as-you-go”
(PAYGO) technologies partly address this by allowing households to purchase SHS on
credit with flexible repayments. After making an initial down-payment, customers con-
tinue to pay at a set daily rate until full ownership is achieved. The SHS serves as “dig-
ital collateral,” enabling providers to remotely deactivate units if payments are missed
(Gertler et al., 2024).

A crucial feature of PAYGO is that payments are typically made via mobile money.
However, many rural residents primarily transact in cash and often must travel long
distances—the median distance in our sample is 6.7km—to reach a mobile money agent.
While PAYGO alleviates liquidity constraints, it introduces substantial transaction costs
for those living far from agents. To quantify this fact, we collect survey data that reveals
that transaction costs are massive and account for approximately 28% of the total cost
of solar in rural Togo, rising to 43% in the most remote regions (75th percentile). This
estimate likely understates the true transaction costs, as it only captures transportation
expenses, excluding the cost of time. These billing costs are not unique to solar electricity;
they also affect other essential services that operate under a PAYGO model, like water.
They can significantly reduce demand by making frequent small payments financially
burdensome, especially for households unable to save or access credit to make larger, less
frequent purchases. This paper highlights how and why these transaction costs, com-

3For rural Togolese households without grid access, SHS is one of the few available options for electric-
ity. In our data, more than 95% of SHS customers lacked electricity, prior to adoption, and used flashlights,
kerosene, or lanterns for lighting. Less than 0.5% owned a generator before acquiring a SHS.
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bined with liquidity constraints, pose major barriers to rural electrification.
We utilize data from three main sources to support this claim. First, we partnered with

a leading SHS provider in Togo, with over 30,000 customers across more than 2,500 ru-
ral villages, covering a substantial portion of the country.4 The company’s data includes
daily records of electricity consumption, comprehensive payment records, and customer
characteristics. This detailed data helps us evaluate the subsidy’s effects on both the ex-
tensive margin of gaining electricity access and the intensive margin of electricity con-
sumption and payment behavior. Second, we collaborated with the Togolese government
to obtain the GPS location and date of introduction of all mobile money agents in Togo.
Third, we conducted surveys at various mobile money locations in rural Togo to measure
transportation costs and quantify the transaction costs associated with travelling to pay
for electricity.

We develop a simple conceptual framework to predict the impacts of price and trans-
action cost reductions on household adoption (extensive margin) and payment behavior
(intensive margin). We predict that high transaction costs and liquidity constraints sup-
press electricity adoption by raising the income needed for households to afford SHS.
Reducing electricity prices and transaction costs should therefore increase adoption, with
price reductions being more effective in areas with lower transaction costs due to comple-
mentary effects. On the intensive margin, households using PAYGO face a choice between
infrequent large payments (bulk purchases) and more frequent smaller payments incur-
ring higher total transaction costs. Reductions in price unambiguously decrease payment
frequency, while reductions in transaction costs have an ambiguous effect when house-
holds are liquidity constrained. Lowering transaction costs may increase payment fre-
quency as each payment is less costly. However, it may also lead to fewer payments due
to an income effect, as households become relatively wealthier, enabling bulk purchases
and offset the need for frequent payments. Our framework shows that addressing both
liquidity constraints and transaction costs can complement each other to enhance electri-
fication efforts.

The main finding of this paper is that transaction costs play a critical role when liq-
uidity constraints are present, highlighting the need for policy complementarity through
simultaneous reductions in price and transaction costs. Throughout the analyses, we ex-
ploit the scattered rollout of the two policies across villages over time. We follow Sun
and Abraham (2021) and implement the “interaction-weighted” event-study estimator,
to estimate the dynamic intent-to-treat effects of the policies. We begin by showing that

4In 2016, these villages had a particularly low electrification rate, with only about 7% of rural house-
holds accessing any electricity source (Government of Togo, 2016).
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the subsidy significantly boosted adoption: using the staggered rollout, we find that the
adoption rate more than doubled with the 44% price reduction, with a 149% increase in
applications. We then present four pieces of evidence to support and quantify the impor-
tance of financial inclusion in explaining this large effect.

First, we find that the subsidy’s impact on extensive-margin adoption varies with
baseline transaction costs. Villages with a mobile money agent saw a 190% increase in
SHS applications in response to the subsidy, 37 percentage points higher than in villages
without a mobile money agent. We use geospatial estimates of village wealth derived
from phone-use and survey data to test the robustness of the results and confirm that
baseline wealth disparities across areas do not drive the results. We further show that our
results are not driven by differences in population density and subsidy access.

Second, we examine the subsidy’s intensive margin effects on consumption and pay-
ment behavior among existing customers. The subsidy leads to an immediate and per-
sistent 18% reduction in payment frequency, allowing customers to purchase electricity
in bulk while maintaining their overall consumption. This shift towards consolidating
payments underscores the critical role of transaction costs.

Third, we evaluate the impact of the policy expanding the mobile money agent net-
work, rolled out after the subsidy’s full launch. This expansion led to a 188% increase in
new customers, a substantial increase coming after the subsidy rollout and comparable
to the subsidy effect itself. Unlike the subsidy, impacts take time to materialize, peaking
roughly 12 months after villages are treated. A back of the envelope calculation suggests
that, by reducing transaction costs, the expansion policy lowers total electricity-related
expenditures by 34%.

Fourth, we find no statistically significant effects on payment frequency. This last find-
ing indicates that an income effect partially offsets any potential increase in the number of
payments—resulting from lower transaction costs—by enabling households to purchase
electricity in bulk.

Taken together, these findings highlight the importance of complementarity between
price reductions and transaction cost reductions, particularly in settings with significant
liquidity constraints. Addressing these market frictions together is key to increase de-
mand for electricity and adoption rates. From a policy standpoint, simply reducing elec-
tricity prices may not suffice. Implementing a policy that reduces transaction costs, such
as expanding the mobile money agent network, may be necessary for the subsidy’s effec-
tiveness.

This study engages with three distinct strands of the development literature. First,
it extends the research on transaction costs and the broader role of financial inclusion in
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affecting economic outcomes and technology adoption in low-income countries (Burgess
and Pande, 2005; Suri, 2011; Jack and Suri, 2014; Fink et al., 2020; Breza and Kinnan, 2021;
Fonseca and Matray, 2022; Berkouwer et al., 2023). More broadly, this study provides
empirical support to the idea that large-scale investments may fail to yield intended out-
comes when transaction costs are overlooked (Devoto et al., 2012; Duflo, 2017). We use
the context of solar electrification to show how financial inclusion, by lowering transac-
tion costs—such as the distance to billing facilities—can improve economic outcomes by
increasing access to essential services.

Second, the study contributes to literature on the demand for electricity in low-income
rural areas. We provide a direct estimate of the demand for SHS in a different context,
adding to recent papers finding limited demand for electricity (Lee et al., 2020b; Grimm et
al., 2020; Burgess et al., 2023). We find higher demand when transaction costs and liquid-
ity constraints are considered, highlighting the importance of addressing these frictions.
This study demonstrates that the effectiveness of policies designed to increase adoption
relies on complementary measures aimed at reducing key frictions, such as expanding the
mobile money agent network.5 Without addressing these frictions, the potential welfare
impacts and effectiveness of electricity subsidies may be limited.6

Third, this paper contributes to the growing literature on pre-paid metering via the
PAYGO model, a common approach for new electric connections in rural low-income
areas (Gertler et al., 2024). We focus on off-grid solar solutions, complementing recent
work that emphasizes grid connections (Lee et al., 2020a,b). While pre-paid metering has
proven cost-effective in urban settings (Jack and Smith, 2020), evidence from rural areas
with severe liquidity constraints and high transaction costs, like Togo, remains limited.
Our analysis provides further evidence on the role that transaction costs play in adoption
and consumption decisions in rural settings—see also Lang (2024b). We complement
recent work by Lang (2024a), which highlights the adoption effects of the same subsidy
policy. By leveraging two complementary policies in this context (subsidy and mobile
money expansion), we instead focus on the role of transaction costs themselves in shaping
both extensive and intensive electricity demand.

The remainder of the paper is organized as follows: Section 2 describes the setting
and the policies. Section 3 presents our theoretical framework for the role of transaction

5Policy complementarities are plausible in many contexts. For instance, Moneke (2020) finds that si-
multaneous investments in road and electricity infrastructure have markedly different impacts on sectoral
employment and income than separate investments.

6The welfare impacts of electricity access are mixed in the literature. Some studies indicate positive
effects on economic outcomes like productivity (Rud, 2012), housing values (Lipscomb et al., 2013), labor
supply (Dinkelman, 2011; van de Walle et al., 2017), and children’s education (Khandker et al., 2013), while
others find more limited and heterogeneous effects (Lee et al., 2020a; Burlig and Preonas, 2022).
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costs in consumer demand. Section 4 details the data sources and empirical framework.
Section 5 discusses the main empirical findings. Section 6 concludes with discussions on
potential policy implications.

2 Study Background

2.1 Rural Electrification in Togo

Togo, with a population of 8.5 million and a GDP per capita of $2,200 (PPP, 2017), relies
heavily on the agriculture sector, with agriculture employing the majority of the labor
force and contributing to 29% of GDP. In 2015, over 50% of Togolese lived below the
international poverty line of $1.90 per day. Financial inclusion remains low, with only 45%
of adults holding accounts at financial institutions or mobile money providers in 2017,
primarily in urban areas (World Bank Group, 2017). Moreover, 30% of the population still
lacks access to a SIM card (GSMA, 2021).

While global electricity access has risen to 90%, access remains low in Sub-Saharan
Africa, and Togo is no exception. Urban electrification has improved, with 45% of house-
holds connected, but rural areas remain starkly underserved, with just 7% electrified
(Government of Togo, 2016). The high cost of grid electricity, driven by sparse popu-
lations and low consumption, has hindered rural electrification.

However, the recent rise of cost-effective off-grid solutions, particularly solar power,
has changed the landscape. The cost of photovoltaic cells dropped from $2 per watt in
2010 to $0.19 in 2020, creating new opportunities to electrify rural areas. Some of the key
differences between grid and off-grid electricity include: (1) Flexibility. Off-grid systems
can be deployed quickly at the household or village level, unlike the slow and centralized
grid expansion. (2) Usage. Off-grid solutions typically support low- to medium-power
appliances, such as general lighting, phone charging, fans, whereas grid connections or
larger solar setups are needed for high-power appliances and industrial use. (3) Reliabil-
ity. Urban areas in Togo suffer frequent grid outages (Kpemoua, 2016), making off-grid
solar more reliable, though it may still be expensive for poor rural households reliant on
subsistence farming and lacking formal credit access.7 While off-grid solar presents a flex-
ible and potentially more reliable alternative, its affordability remains a challenge for the
rural poor, typically engaging in subsistence farming and without access to formal credit.

7Shortages may still happen with solar solutions in areas experiencing consecutive heavy rainy days,
especially for medium-power appliances.
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2.2 PAYGO Solar Home Systems

This limited access to electricity has spurred the development of PAYGO solar home sys-
tems (SHS) by private companies, enabling rural households to purchase SHS on credit.
These systems require a modest upfront downpayment, followed by recurring payments
that better align with the irregular income profiles of rural households.

Customers select a solar home system bundled with high-efficiency appliances such
as light bulbs, rechargeable radios, flashlights, phone chargers and TVs. The cost of the
bundle depends on the number of devices and the size of the solar panel. After selecting
a bundle, customers make a downpayment, which secures the installation of solar pan-
els, a battery for electricity storage, and the chosen appliances in their home. This initial
payment also serves as a screening mechanism to exclude the households who may not
be able to meet the full payment. Customers then “pay-as-they-go” until they reach the
bundle’s total price, typically equivalent to three years of continuous usage in this set-
ting. The daily rate for solar access varies based on the number of appliances included in
the bundle. This study uses data from a large SHS provider in Togo, which offers three
bundles:

1. Basic kit: Includes a small solar panel, three light bulbs, and a phone charger. Down-
payment (including 30 days of electricity): 8,960 CFA (around $15). Subsequent
daily rate: 160 CFA ($0.27) or $8 per month, with USD 1 = CFA 600.

2. Plus kit: Includes the Basic kit plus a radio. Downpayment (including 30 days of
electricity): 12,320 CFA ($20.5) and $11 per month.

3. Premium kit: Includes the Plus kit plus a TV. Downpayment (including 30 days of
electricity): 21,000 CFA ($35) and $ 19 per month.

Unlike most grid electricity payment systems, the PAYGO model allows customers
flexibility in when and how much they pay over time. Customers purchase electricity in
daily units, gaining unlimited access to their SHS for the duration purchased. If access
time expires, the solar company can remotely lock the SHS, preventing further use until
additional days are purchased—a form of “digital collateral” (Gertler et al., 2024). While
there is some flexibility in payment timing, customers who do not make payments for
over sixty consecutive days are considered “in default,” and the solar company may re-
possess the SHS after 120 days of inactivity. The combination of remote lockout and the
credible threat of repossession makes PAYGO contracts enforceable, even in settings with
weak institutions, as observed in similar systems in Rwanda (Lang, 2024b).
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2.3 High Transaction Costs Inherent to Electricity Payments

Customers must pre-pay for electricity access time using their mobile phones via “mobile
money.” However, most rural Togolese households typically transact and earn income
in cash, and therefore must travel to a mobile money agent in order to deposit cash into
their accounts.8 Figure A1 plots the distribution of customers’ distance to the nearest
mobile money agent before the subsidy and highlights that this distance is often sub-
stantial, with a median of 5.6 km. The distance is even larger, 6.7km, when we consider
the entire universe of villages in our data, including those that had no customers (Figure
A2). This distance creates a significant transaction cost in the electricity payment process,
particularly for households that both live far away from agents and must make frequent
payments due to liquidity constraints, preventing them from saving or buying in bulk.

The survey data we collected reveals that transaction costs are massive and account
for approximately 28% of the total cost of electricity in rural Togo, rising to 43% in the
most remote regions (75th percentile). This estimate only includes transportation costs,
suggesting it likely underestimates the true transaction costs.9

2.4 Policy 1: Nationwide Subsidy

In 2019, the Government of Togo launched the CIZO policy, meaning “light up” in Mina,
one of the Togolese languages, with the goal of achieving universal access to electricity
by 2030. This policy combines both grid extension and off-grid technologies to achieve
electrification in the most cost-effective way, with nearly 50% of additional households
expected to be connected through off-grid solutions. Specifically, the government’s goal
was to install SHS for 550,000 rural households. Off-grid companies began operating in
Togo only in 2017, and to further boost off-grid adoption, the government introduced a
nationwide public subsidy for SHS. The subsidy was rolled out over six months, reaching
three different groups of districts at three different times, which we exploit in the analysis
as described further in Section 4.2.1.

While other African countries have also subsidized SHS, these efforts typically focus
on the supply side by providing financial support to service providers to reduce the cost

8In Rwanda, Lang (2024b) finds that most PAYGO customers visit a mobile money agent for every solar
payment, rather than saving money in their mobile wallets. We assume a similar pattern in rural Togo, a
comparable context.

9To obtain these estimates, we first calculate the total distance covered to make payments each month.
We multiply the median customer distance to the nearest mobile money agent prior to subsidy launch, by
the average number of payments customers make each month, times two (to account for the round trip).
We then multiply this total travel distance by the median price per km for hiring a moto taxi, which we
measure in our survey of transport costs in rural villages (section 4).
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of reaching low-income households, structured as results-based financing (e.g., Fonds
Mwinda in the DRC and Endev in Rwanda). The Togolese program is distinct as it offers
an untargeted demand-side subsidy, the first of its kind in Africa to our knowledge. This
subsidy consists of a uniform price reduction of CFA 70 per day, regardless of the bundle
chosen (approximately $0.12 per day of electricity purchased, or roughly $3.5 per month),
which equates to about a 45% reduction in the cost of a “basic” kit.

Practically, the subsidy works as follows: (i) customers still make an initial downpay-
ment, including the first month’s electricity (this is not subsidized by the policy), and (ii)
for subsequent months, customers pay $3.5 less than their monthly rate to access a full
month of electricity. For instance, with the “basic” kit, the subsidy reduces the monthly
cost from around $8 to about $4.5, a 44% price reduction. For customers with higher-tier
plans, the subsidy results in a 32% reduction (from around $12 to about $8 per month)
for the “plus” kit and a 19% reduction (from around $20 to about $16 per month) for the
“premium” kit. Given Togo’s 2019 monthly GDP per capita of $57, this subsidy repre-
sents a significant portion of rural households’ income. The subsidy is proportional to
the amount paid by customers, with the government matching electricity purchases up
to $3.5 per month. Customers who make no payments or default on the product do not
receive the subsidy.

Eligibility and Subsidy Outreach Conditional on payment, all rural households who
used PAYGO SHS were technically eligible for the subsidy. The evidence suggests, how-
ever, that not all customers actually received the subsidy. One of the reasons for this
is that the government required SHS payments to be made through a personal mobile
money account that was linked to the customer’s solar account. This was designed to
ease implementation and encourage digital financial inclusion in rural areas. In reality,
however, it limited subsidy outreach, especially in the first few months (Figure A3), due
to technical issues with sharing account numbers between the government agency and
telecommunication private companies. We take this into account in our empirical strat-
egy, described further in Section 4.

2.5 Policy 2: Mobile Money Agent Expansion

In August 2019, the Togolese government partnered with the Post Office to launch a large-
scale campaign to recruit and train mobile money agents, deploying them across over
200 villages nationwide. This initiative was part of a broader effort to boost financial
inclusion. The expansion was not based on a predetermined pattern; instead, local Post
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Office supervisors were given discretion to identify villages lacking mobile money access
and include them in the rollout.

We take advantage of this discretionary process in our empirical strategy (see Section
4) and leverage this unique and rapid expansion to study the impact of mobile money
agent access, as well as the complementarity between subsidies and the mobile money
agent rollout. In total, about 101 villages received their first mobile money agent through
this campaign at different times between September 2019 and December 2021. Crucially,
the agent expansion stopped in April 2020 with the onset of COVID, and resumed at the
start of 2021. Figure A4 illustrates the sharp increase in the number of villages gaining
access to a mobile money agent due to the expansion campaign. Figure A5 maps the
spatial distribution of villages that received agents.10

3 Conceptual Framework: Impact of Transaction Costs on

Electrification

This section provides a theoretical framework to formulate predictions about how trans-
action costs and liquidity constraints affect the adoption of Solar Home Systems (SHS)
and the frequency of electricity payments. See Appendix C for the derivations and fur-
ther details.

3.1 Setup

The framework considers households that receive income over two periods and decide
whether to adopt SHS based on the household’s income, the price of electricity, and the
fixed transaction costs per payment.

Households choose the optimal payment plan to maximize their utility from electricity
consumption. They decide how much to consume and how many days of electricity
to buy, considering their income and assets. They face a choice: buy electricity in bulk
with one payment or spread payments across two periods, influenced by the cost of each
transaction and their income.

10We use a 3km distance of the mobile money agent to the village center as a reasonable distance within
which an individual might choose to walk to reach a mobile money agent, without incurring monetary
costs.
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3.2 Adoption

Households adopt SHS if they have enough income to cover the cost of electricity over
the two periods. Without liquidity constraints, households can borrow against future
income, making adoption easier. However, if households are liquidity-constrained and
cannot borrow, they must have enough income in the first period to cover at least one day
of electricity.

The level of adoption depends on the proportion of households that meet this income
requirement at baseline. Adoption is lower with liquidity constraints since some house-
holds cannot afford the upfront cost. Reducing the price of electricity or the transaction
costs increases adoption, especially in areas where transaction costs are already low, as
more households can then afford the SHS.

3.3 Frequency of Payments for Electricity

Without Liquidity Constraints In the absence of liquidity constraints, households aim
to smooth their consumption over time. They decide whether to buy electricity in bulk or
spread payments based on the costs. If the money saved from making fewer payments
is greater than the transaction cost, they will choose to buy in bulk. Therefore, reducing
electricity prices leads to fewer payments, while reducing transaction costs encourages
spreading payments over time.

With Liquidity Constraints When households are liquidity-constrained and cannot
borrow against future income, their payment decisions are more complex. Households
with higher liquidity constraints must spread payments as they can’t afford the bulk pur-
chase upfront. For those who can afford bulk payments, they face a tradeoff between
having non-smooth consumption and incurring transaction costs.

Price reductions generally lower the number of payments by alleviating income con-
straints. Reducing transaction costs, however, has an ambiguous effect: it can make it
cheaper to spread payments but also allows more households to afford bulk payments
(income effect).

3.4 Framework Predictions

The framework helps formulate the following predictions (as outlined in Appendix C):

1. Price reductions increase adoption.
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2. Transaction cost reductions increase adoption.

3. There are complementary adoption effects of reducing price and transaction costs:
price reductions in villages with low transaction costs should have higher effects on
adoption than in villages with high transaction costs.

4. Price reductions decrease payment frequency.

5. Transaction cost reductions have an ambiguous effect on payment frequency.

For Prediction 5, transaction cost reductions have ambiguous effects on payment fre-
quency because while lower transaction costs have a direct impact increasing the number
of payments as each payment is less costly, the income effect—as households are relatively
wealthier due to incurring lower transaction costs—may enable households to optimally
make larger, less frequent payments.

This framework illustrates the nuanced interactions between transaction costs, liquid-
ity constraints, and household behavior in adopting SHS and deciding on the frequency
of electricity payments. It can be easily extended to other bill payments, such as grid,
water, which often involves payment at a particular place.

4 Data and Empirical Specifications

In this section, we describe our data and lay out the core empirical specifications used for
our analysis.

4.1 Data, Outcomes of Interest, and Variable Construction

PAYGO Customer Data We utilize data from two primary sources. First, we obtain
household-level administrative data on customer payments from a leading provider of
off-grid solar home systems (SHS) in rural Togo. This data includes transaction-level de-
tails on customer behavior and household-level registration information, such as house-
hold characteristics and previous energy sources. Second, we have detailed subsidy data
provided by the Government of Togo.

The company data covers approximately 53,000 households across 2,600 villages up to
December 2021. During the study period, there were two major off-grid solar companies
in Togo, with the second covering around 5,000 households. Given the similar products
and pricing structures, we believe the data is reasonably representative of the SHS pop-
ulation in Togo. Table A1 presents descriptive statistics for households in February 2019
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(before the subsidy launch) and May 2020 (about a year after the launch). At baseline, the
average household head was 41 years old; 78% worked in agriculture, 10% owned a busi-
ness, and 11% were employees. Before adopting SHS, 53% of households used kerosene,
lanterns, or had no access to energy, while 44% relied on flashlights. Fewer than 2% had
access to electricity through the grid, a generator, or solar energy.

From the transaction-level data, we constructed several variables to track electricity
usage over time. Table A1 details the bundle choices customers made at registration.
They chose between three options: (i) the basic kit (a small solar panel with three light
bulbs and a phone charger), (ii) the intermediary kit (basic kit plus a radio), and (iii) the
premium kit (intermediary kit plus a TV). Conceptually, we consider that households
first decide whether or not to adopt the solar panel at the proposed basic kit’s price. After
making this decision, they add additional items at their convenience like a radio or TV,
increasing the overall price. The share of households selecting the basic kit increased from
32% at baseline to 46% in May 2020.

We measured the number of payments made each month, the average payment size,
and how these payments translated into electricity consumption, as indicated by the uti-
lization rate. A 100% utilization rate means the customer purchased electricity for every
day of the month. While there is some variation across customers, the average utilization
rate was 72% at baseline and 74% at endline. Most customers in our estimating sample
had electricity for most of the month, with an average of 27 days and a notable mode
of 30 days (Figure A6). Figure A7 shows the distribution of monthly payments in the
four months before the subsidy rollout. On average, households made 1.63 payments
per month, with significant variance. Notably, 51% of the sample made one payment
per month on average, suggesting they bought in bulk, while the rest made two or more
payments per month.

Finally, we match the subsidy data to the company’s records using customers’ phone
numbers and transaction dates. Due to the complex matching process, subsidy outreach
was limited, as detailed in Section 2.4.

Mobile Money Agent Location Data We use data from the Ministry of the Digital Econ-
omy and Digital Transformation in Togo, which detail the longitude and latitude of all
mobile money agents in the country from 2010 to 2024, on a monthly or yearly basis. This
data is instrumental to assess how the effects of the subsidy vary based on the distance to
a mobile money agent before the subsidy rollout.

Additionally, we obtain data on the large-scale mobile money agent expansion pro-
gram implemented by the Togolese government and the Post Office, as detailed in Section
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2.5. This includes the names, coordinates, and introduction dates of villages where new
agents were established.

Transport Costs Data Rural residents, including SHS customers, frequently rely on mo-
torbike taxis to reach nearby villages when walking is too time-consuming. To estimate
the cost of traveling to the nearest mobile money agent for electricity payments, we col-
lected transport data from moto-taxi drivers in 34 rural villages across Togo’s five regions.
For each village, we recorded the price, distance, and travel time to multiple nearby
villages, resulting in 126 origin-destination observations. This data helps us quantify
the monetary savings from consolidating electricity payments into fewer transactions,
thereby reducing the number of trips to a mobile money agent. Since we collected this
data in 2023, we deflate prices to 2019, the period of analysis.

Wealth Data To estimate wealth levels across Togo, we use data from Meta’s Relative
Wealth Index, a global geospatial database developed by Chi et al. (2022). This index
combines household survey data with non-traditional sources like satellite imagery, cel-
lular network data, topographic maps, and privacy-protected Facebook connectivity data.
Machine learning algorithms predict relative wealth at a fine resolution of 2.4 km². Im-
portantly, this data captures relative wealth within each country, enabling us to compare
wealth across villages in Togo and distinguish between wealth and transaction costs.
Since not every village directly corresponds to a wealth cell, we calculate the average
wealth score for all cells within a 5 km radius of each village (Figure A8).

4.2 Estimation and Causal Inference

4.2.1 Event-Study Analysis of Subsidy Policy

The subsidy policy was announced in February 2019 and rolled out over six months,
reaching different groups of districts at three different times (see Figure 1). This scattered
rollout provides natural variation to evaluate the initial impact of the policy. The timeline
for the phased rollout is as follows:

• Group 1: Early March 2019: Subsidy begins in 11 districts.

• Group 2: Early May 2019: Subsidy begins in an additional 13 districts.

• Group 3: Early July 2019: Subsidy begins in the final 12 districts.
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The Government of Togo first proceeded to pilot the policy in specific districts with
the lowest electrification rates (0-10%), then districts with 11-20% and finally with districts
with 21-40%, based on data from 2016. Table A2 shows increasing baseline electrification
rates across the three groups of districts, according to the 2016 government data.11 Since
the 2016 data was outdated by 2019, arbitrary considerations played a role in determining
when each district received the subsidy, with the coordinator choosing some districts to
receive the subsidy later, as they supposedly had greater access to the grid in 2019.

To estimate the policy’s causal effect using this variation, we first test for pre-trends
(see in later sections) and examine a baseline balance table of household characteristics
and electricity behavior (see Table A3). Overall, the three district groups show limited
baseline differences in terms of characteristics of pre-subsidy customers. While there are
slight variations in income sources—Group 3 customers are less likely to work in agricul-
ture (67%) and more likely to own a business (16%) compared to Groups 1 and 2—there
are no major differences in previous energy sources, with low electricity access common
across all groups. Pre-subsidy electricity behavior is also similar, though Group 3 cus-
tomers are more likely to choose the premium kit and make a slightly higher number of
payments.

We use an event-study design that exploits this staggered subsidy rollout to estimate
the intention-to-treat (ITT) effects of subsidy eligibility. In our setting, pre-subsidy elec-
trification levels differ across treatment cohorts, which could lead to treatment effect het-
erogeneity. A recent literature has highlighted various issues that arise with two-way
fixed effects (TWFE) models in the presence of treatment effect heterogeneity across time
and cohorts (Borusyak et al., 2021; De Chaisemartin and d’Haultfoeuille, 2020; Goodman-
Bacon, 2021).12 To address these potential issues, we follow Sun and Abraham (2021) and
estimate dynamic ITT effects using their interaction-weighted (IW) estimator, which is
robust to both treatment effect heterogeneity across cohorts and cross-lag contamination.

Extensive Margin Analysis
We begin by estimating the effect of subsidy eligibility on SHS adoption at the village

level using the following specification:

11Since the data was provided in ranges, the midpoint of each range is used to calculate district averages.
All districts in Group 1 are in the 0-10% range, hence there is a 5% mean with no standard deviation.

12In particular, Sun and Abraham (2021) shows that in a staggered treatment setting, where different
groups become treated at different times, estimating dynamic treatment effects with a simple TWFE model
has two problems. First, it can put negative weight on post-treatment treatment effects for some units. Sec-
ond, the coefficient on a given lead or lag can be contaminated by effects from other periods, and observed
pre-trends may result from treatment effect heterogeneity alone.
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Ydt = λt + θv +
∑

e∈{1,2}

3∑
l=−3, ̸=−1

βl
e1{Subvd = e} ·Dl

vdt + ϵvdt. (1)

Here, Ydt represents the number of prospective customers who applied to purchase SHS
in village v, located in district d, during month t. We focus on applicants rather than actual
new customers to control for changes in supply of SHS panels. λt and θv are month and
village fixed effects, respectively. 1{Subvd = e} are dummy variables for whether village
v in district d belongs to the first or second subsidy rollout cohort e (i.e., districts that
became eligible in March and May, respectively). Following Sun and Abraham (2021),
villages in the last set of districts to become eligible (Group 3) serve as the “last treated”
control group. Lastly, Dl

vdt = 1(t − Subvdt = l) are relative time indicators showing the
number of periods l since village v became eligible for the subsidy at month t.13 We cluster
standard errors at the village level.

The parameters of interest are β̂l =
∑

e∈{1,2} ω
l
eβ̂

l
e, with weights ω representing the

sample shares of each cohort in the relevant periods. For l ≥ 0, β̂l captures the impact of
the subsidy each month after its implementation as a weighted average of cohort-specific
treatment effects. To obtain a “static” average ITT effect and associated standard error, we
follow Sun and Abraham (2021) and take the average of the dynamic effects. Specifically,
we test the null hypothesis that the following linear combination of coefficients equals
zero:

H0 :

∑3
l=0 β̂

l

4
= 0 (2)

Our identification strategy relies on two key assumptions. First, the parallel trends
assumption, which requires that, in the absence of the subsidy, the difference between
the adoption rate of “treated” and “control” villages would have been constant over time
(Angrist and Pischke, 2008). Second, we assume that the subsidy event was unpredictable
or that, at the very least, there was no anticipatory behavior.14

Customer-Level Intensive Margin Analysis
To analyze how customers respond to the subsidy at the intensive margin—in terms of

13We exclude the pre-period l = −1 as is standard practice. We include three post-treatment periods, as
all districts were eligible by July 2019, making it impossible to estimate treatment effects beyond this point.

14The linear trend in l is not identified with a scattered policy rollout. This issue arises because we cannot
distinguish between a pure calendar fixed effect with an absence of causal effects versus actual causal effects
combined with anticipation of treatment. However, we restrict the pre-trends in the specification, while
keeping district fixed effects to still observe potential non-linear pre-trends.
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payment frequency, average payment size, and electricity usage—we estimate a similar
model to Equation (1) at the customer level:

Yidt = λt + ηi +
∑

e∈{1,2}

3∑
l=−4, ̸=−1

βl
e1{Subid = e} ·Dl

idt + ϵidt, (3)

where instead of village fixed effects θd we now have customer fixed effects ηi. We cluster
standard errors at the customer level. Additionally, we impose two sample restrictions.
First, to have a balanced panel across pre- and post-subsidy periods, we restrict the sam-
ple to customers who had adopted an SHS by November 2018, a few months before the
subsidy became available. Second, we limit our analysis to customers who received the
subsidy at least once by December 2019, five months after the staggered subsidy rollout
reached all districts.15 This yields a sample of 3,423 customers. To obtain the static av-
erage effect we follow the same procedure as with the village-level analysis, where we
average the dynamic effects.

4.2.2 Heterogeneous Treatment Effects

To quantify the role of transaction costs in SHS adoption and payment decisions, we es-
timate the heterogeneous effects of the subsidy based on the level of pre-subsidy access
to a mobile money agent. Using the mobile money agent location data described in Sec-
tion 4.1, we calculate the distance of each village to the nearest mobile money agent in
December 2018, three months before the subsidy was rolled out.16 Rural Togolese villages
are often sparsely populated, with households sometimes located several kilometers from
the village centroid. For this reason, we define a village as having a mobile money agent
if the distance between the centroid and the nearest agent is less than 3km. We check the
robustness of our results to various distance cutoffs.

To estimate heterogeneous treatment effects on SHS adoption, we follow Sun and
Abraham (2021) and adapt equation 1. Instead of having one single set of relative-time
indicators, Dl

vdt, we now have two sets of indicators: one for villages with a mobile money
agent (Mv = 1) an another for villages without an agent (Mv = 0):

15Given the limited subsidy outreach, we impose this restriction to ensure that our results are more
representative of the population of customers who received the subsidy within a reasonable time frame
after becoming eligible, even if not during the evaluation period.

16Say something about how we calculate it?
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Yidt = λl+ηv+
∑

e∈{1,2}

3∑
l=−3,l ̸=−1

βl
e,0·1{Subvd = e}·Dl

vdt·(1−Mv)+βl
e,1·1{Subvd = e}·Dl

vdt·Mv+ϵvdt

(4)
The dynamic ITT effect for villages with and without a mobile money agent is cap-

tured by the parameters βl
e,1 and βl

e,0, respectively.17 To estimate the differential effect of
the subsidy by agent access, we test the null hypothesis of the following linear combina-
tion:

H0 :

∑3
l=0 β̂

l
1

4
−

∑3
l=0 β̂

l
0

4
= 0 (5)

Finally, we extend this analysis to examine payment frequency, average payment size,
and electricity usage at the customer level, replacing village fixed effects with customer
fixed effects and applying the same sample restrictions as in the event study (Section
4.2.1).

4.2.3 Event Study Analysis of Mobile Money Agent Expansion

We leverage the expansion of mobile money agents throughout the country, as outlined in
Section 2.5, to estimate the causal effect of reduced transaction costs using an event-study
design. Figure A4 shows that 101 villages without any previous mobile money agents
received an agent at different times between September 2019 and December 2021. Cru-
cially, the agent expansion stopped in March 2020 with the onset of COVID, and resumed
in January 2021. Our event-study design exploits this abrupt halt in agent expansion,
and compares villages that received an agent between September 2019 and April 2020 to
villages that received one in 2021 (the “last-treated group”). The analysis period is thus
September 2019 to December 2020.

Our analysis proceeds as follows. First, given our interest in estimating the impact of a
reduction in transaction costs, we restrict the sample to villages that did not have an agent
prior to receiving one through the expansion policy. Second, we conduct the analysis at
the bimonthly instead of the monthly level for two reasons. First, the information we
have are approximate months of agent arrivals. Second, our sample size is considerably
smaller than for the subsidy analysis, thus aggregating outcomes to the bimonthly level
smooths the data and reduces noise.

17As in equation 1, these are the weighted averages of cohort-specific treatment effects: βl
e,1 =∑

e∈{1,2} ω
l
e,1

ˆβl
e,1 and βl

e,0 =
∑

e∈{1,2} ω
l
e,0

ˆβl
e,0.
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We define a village as being treated by the expansion policy when an agent is intro-
duced within a 3km radius. The staggered expansion generates five treatment cohorts
that are treated at different bimonths; September 2019, November 2019, January 2020,
March 2020 and January 2021. As with the analysis of the subsidy’s impact, we exploit
this phased rollout to implement Sun and Abraham (2021)’s IW estimator, where villages
treated in 2019-2020 are the treated cohorts, and the villages treated in 2021 are the control
group.

We estimate impacts on SHS adoption through the following equation:

Yvt = λt + ϕv +
∑
e∈[1,4]

4∑
l=−4,̸=−1

βl
e1{Agentv = e} · Al

vt + ϵvt, (6)

where Yvt is the number of SHS applications in village v in bimonth t, λt and ϕv are time
and village fixed effects, respectively, and 1{Agentv = e} are dummy variables for village
v belonging to treatment cohort e, where a cohort is defined by the bimonth in which it
was first treated. Lastly, M l

vt are relative-time indicators for village v to be l periods away
from initial treatment. The parameters of interest are β̂l =

∑
e∈[1,5] ω

l
eβ̂

l
e, with weights

ω denoting the sample shares of each cohort in the relevant periods. To obtain a single
static average effect and associated standard error, we follow the same approach as with
the subsidy and test the null hypothesis that the average of the dynamic effects is equal
to zero (Equation 2).

We also study intensive margin impacts on payment and consumption behavior by
estimating an analogous equation at the customer level. We impose a balanced panel by
restricting the sample to customers that had joined prior to January 2019, several months
before the agent expansion policy.

5 The Role of Transaction Costs in Demand Estimates and

Policy Impacts

5.1 The Impact of the Subsidy on Adoption

In this section, we analyze the phased rollout of the subsidy across districts to estimate its
causal impact on solar adoption.

We first plot the evolution of solar adoption separately for each of the three district
groups in Figure A9. We observe two key points: (1) the adoption rate increased dramat-
ically in the short term, with new customer adoption rising by an average of 127% in the
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three months following the subsidy launch, and (2) there is no clear evidence that house-
holds in Groups 2 and 3 anticipated the subsidy in their districts. However, this graph
does not allow us to directly distinguish between subsidy and time effects, as demand
appears to be increasing over time in all three district groups before the subsidy.

To address this, we test Prediction 1 by estimating the causal impact of the subsidy.
Figure 2 shows the βl estimates from regression Equation (1), where the outcome variable
is the number of monthly SHS applications per village. Overall, the adoption results are
consistent with the predictions of our framework outlined in Section C.2. We find that
the subsidy significantly increased adoption, leading to approximately 0.2 and 0.4 addi-
tional monthly applications in the first two months respectively, peaking at 0.6 additional
applications in the third month. Table 1 shows that the average effect is 0.415 and is statis-
tically significant at the 1% level. Given that the average pre-subsidy number of monthly
applications in the control group was 0.249, these effects represent more than a doubling
of adoption in the first four months, with an average increase of 167%. The statistically
insignificant βl estimates for the pre-subsidy periods suggest no pre-trends; the joint test
that all pre-trends are different from 0 yields a p-value of 0.205. These findings are in line
with those of Lang (2024a), which uses similar data.

Robustness and Confounders We then perform a series of robustness checks to rule out
potential confounders: supply-side factors and information effects. First, we address the
possibility of supply-side factors that may have differentially influenced adoption dur-
ing the subsidy period. For example, the notion that increased adoption could be due to
greater attention from the solar company on villages eligible for the subsidy compared
to the control group. We present three arguments against this hypothesis. First, the solar
company relies on local shops (approximately one shop per district), which are responsi-
ble for supplying their respective areas and operate independently. We observe no reduc-
tion in supply in control districts during the subsidy rollout, suggesting no reallocation of
resources. Second, discussions with the solar company indicate that the observed impact
is driven by increased demand, not by increased sales attention to the subsidy villages.
Third, our adoption measure is based on the number of applicants, not connected cus-
tomers. While supply issues might affect the number of connected customers, leading to
installation delays, they are less likely to influence the number of applicants. Our results
are consistent across both measures, and the lack of significant discrepancies between
them suggests that supply-side effects are minimal.

Second, we address concerns that the increase in adoption might be driven by greater
awareness of the SHS product rather than the price reduction itself. Information barriers
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are particularly relevant when assessing policy impacts, especially in rural areas of low-
income countries where knowledge of new technologies is often limited. To investigate
this, we collected detailed marketing campaign data from the solar company over time
(bi-monthly) at the shop level. We found no significant increase in information campaigns
during the subsidy launch; if anything, the number of campaigns decreased everywhere
during the subsidy launch. We further discuss this issue in Appendix Section D where
we explore the role of marketing campaigns and show that they do not appear to drive
our results. However, this is one type of information campaign, and we cannot fully rule
out the information channel potentially coming from public officials, which might have
targeted treated areas first.

5.2 The Role of Transaction Costs in Adoption Decisions

To provide initial evidence that transaction costs significantly influence demand estimates
and policy effectiveness, we investigate whether the impact of the subsidy on adoption
varies depending on access to mobile money agents. As previously mentioned, payments
for electricity must be made through a mobile money account. Given that rural customers
predominantly transact in physical cash, mobile money agents play a crucial role in fa-
cilitating these payments. Consequently, customers in villages farther from an agent face
higher transaction costs when paying their bills.

Prediction 3 states that the subsidy will have a greater impact on adoption in areas
with lower transaction costs, as the affordability threshold for adoption is lower in these
areas. We test this prediction by running the heterogeneous treatment effects specification
specified in Equation 4. Table 1 shows that the adoption rate increases significantly more
in villages with a mobile money agent relative to those without an agent. There was an
increase in the number of monthly applications of 1.09 relative to 0.38 and this difference
is statistically significant at the 5% level. Figure 3 shows how these differences increase
over time, with no evidence of any significant pre-trends.

Robustness and Confounders We then perform a series of robustness checks to rule out
potential confounders that might be associated with mobile money access: wealth, popu-
lation density and differential subsidy access. Mobile money agents might be expected to
be more prevalent in villages that are wealthier, more densely populated and with more
customers successfully receiving the subsidy, all of which could be driving the heteroge-
neous treatment effects from Table 1. Wealth is a potential confounder as only relatively
wealthy households can afford a SHS. Population density might matter as information
about the SHS or the subsidy might spread more effectively in densely populated areas
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due to social learning or more targeted marketing campaigns. Moreover, proximity to
mobile money agents could influence the likelihood of receiving the subsidy, in turn af-
fecting SHS adoption, implying a different causal mechanism. Figure A3 shows that a
significant number of eligible customers did not receive the subsidy, especially early in
the rollout period. We compute the share of customers per village receiving the subsidy
by December 2019, several months after subsidy rollout, and group villages based on this
share. In Table A4, we show that there is no significant relationship between subsidy
receipt and proximity to mobile money agents.

In Table 3, we examine whether the heterogeneous treatment effects with proximity
to mobile money agents holds even within bins of potential confounders. Specifically,
we split the sample into two based on whether village wealth, population density and
village subsidy receipt is above or below the median. We then estimate the heteroge-
neous treatment effects by mobile money agent from equation 4 separately for each of
the six bins. Across all of the bins in Table 3, the subsidy impact is consistently always
higher for villages with a mobile money agent. Importantly, this holds especially true
in the high wealth bins (Panel A), with a differential effect of 0.704 applicants which is
slightly higher than our main effects. We also find that the mobile money heterogeneity
is more pronounced for villages with low population density (Panel B). Unsurprisingly,
as we have found no relationship between village subsidy receipt and having a mobile
money agent, the heterogeneous treatment effects by village subsidy receipt bins (Panel
C) are very similar to our main results, with the differences statistically significant at the
10%. Therefore, the heterogeneous treatment effects by mobile money is highly persistent
across a range of subsamples.

5.3 The Impact of the Subsidy on Consumption and Payment Behavior

In this section, we examine how the subsidy affected payment behavior and electricity
consumption among existing customers, highlighting the trade-offs imposed by trans-
action costs in the context of liquidity constraints. For our event-study analysis at the
customer level, we restrict the sample to customers who had adopted an SHS by Novem-
ber 2018, a few months before the subsidy became available, and those who received the
subsidy at least once by December 2019, five months after the staggered subsidy rollout
reached all districts. We plot the dynamic ITT effects of the subsidy on monthly pay-
ment frequency, average payment size, and electricity consumption in Figure 4, as well
as average effects in Table 4.

We find that customers responded to the subsidy by maintaining their consumption
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of electricity by reducing their number of payments, keeping their average payment size
mostly unchanged. On average, the number of payments per month dropped by 0.38,
approximately 18% of the country group mean of 2.07 (Column 1 from Panel A from Ta-
ble 4). From Figure 4a, we see no evidence of pre-trends and that this sharp reduction
in the payment frequency was immediate and persistent for the following three months.
This persistence provides evidence that this change was intentional, as they could have
easily changed to a different payment after the first couple of months with the subsidy
(e.g. by maintaining the same number of payment days, but reducing the payment size
accordingly). While our point estimates indicate a reduction in the average payment size
of 0.85 days, this accounts for only around 4% of the control mean and is only marginally
significant (Column 2 from Panel A from Table 4). The point estimates for electricity con-
sumption are precisely around 0, implying no changing in their utilization rate (Column
3 from Panel A from Table 4). This is likely because the utilization rate, at around 90%, is
already quite high.

In Panels B, C and D of Table 4, we see minimal heterogeneity in effects based on
whether customers have a mobile money agent in the village. In both cases, customers
strikingly react by reducing their payment frequency over other alternative payment
plans with average treatment effects of -0.33 and -0.40 in villages with and without a
mobile money agent respectively.

These results are consistent with Prediction 4 and align with the presence of high trans-
action costs for liquidity-constrained customers. As discussed in the conceptual frame-
work (Section C.3), customers would prefer to make fewer payments (i.e., buy in bulk) to
minimize transaction costs, but their liquidity constraints prevent them from borrowing
to do so. The subsidy, by lowering the cost of electricity, partially alleviates these liquidity
constraints, enabling more customers to have sufficient income at the time of purchase to
buy in bulk.

fin

5.4 Policy Directly Reducing Transaction Costs

To further illustrate the importance of transaction costs in this context, we examine the
impact of a direct reduction in these costs. We test this by assessing the impact of the
mobile money agent expansion, detailed in Section 2.5, which occurred in late 2019, after
the subsidy rollout. We apply a similar event-study methodology, outlined in Section
4.2.3, to analyze the effects for 101 villages.

We find that the introduction of a mobile money agent led to an increase in the number
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of SHS applications by 0.88, a sizable increase of 188% relative to the control group mean
of 0.47 (Table 5). This positive result on adoption is consistent with Prediction 2. There is a
small, but statistically insignificant increase in the probability of there being an applicant
in the village; this suggests that the impacts of the mobile money agent expansion are
through the intensive margins, with more applicants per village, rather than the extensive
margin. Figure 5 shows that there is no evidence for any pre-trends, and that the effects
are immediate and increasing over time, peaking at around one year after the introduction
of the agent with an additional 2 applications. As the subsidy was already implemented
nationwide by the time the mobile money agent expansion policy was introduced, we
have no price variation to test for complementarity.

The large adoption impacts suggest that the introduction of mobile money agents
must have reduced the effective electricity price significantly. We perform a back-of-the-
envelope calculation to quantify this price reduction. We proceed in three steps:

1. For each village in our estimating sample, we calculate the reduction in distance to
the nearest mobile money agent resulting from the expansion policy.18 This yields a
median reduction in distance of 4.9km.

2. We calculate the average number of payments customers in treated villages make
each bimonth, prior to the expansion.

3. We compute the price reduction resulting from the reduction in distance by taking
the product of four components: the median reduction in distance (obtained in 1),
the median moto taxi price per km in rural Togo (obtained from our survey data of
transport costs), the average number of payments each period (obtained in 2), all
multiplied by two, since customers make round trips.

These calculations yield a reduction in the effective price of electricity of CFA 1,532.
This represents a 34% price reduction relative to the effective electricity price customers
faced prior to the expansion policy.19 The relative price reduction is similar in magni-
tude to the 44% price reduction from the subsidy, which underscores the significance of
transaction costs. This might explain why the adoption impact of the expansion policy

18We compute the difference between the distance to the nearest agent prior to the expansion policy—as
measured by the government-provided agent location data—and the distance to the nearest agent after an
agent is introduced to the village through the expansion policy.

19The effective electricity price prior to the expansion policy is defined as the subsidized electricity price
plus transaction costs. To calculate the transaction cost, we follow the same approach as in our back-of-the-
envelope calculation, replacing the median distance reduction (1) with the median distance to the nearest
agent prior to the expansion policy.
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is comparable to the effect of the subsidy, especially for the subsample of villages with a
mobile money agent, where the subsidy increased the number of applicants by 190%.

Because part of our analysis period overlaps with the onset of COVID, one concern
is that our effect estimates may partly reflect the impact of having a mobile money agent
during a large economic shock. We have several reasons why we believe this is unlikely.
First, news sources indicate that the economic impacts of COVID were far from instanta-
neous in rural parts of Togo. This is illustrated by the fact that we do not observe a “trend
break” in SHS applicants until November 2020 (Figure A10). Second, we re-estimate the
impact of mobile money agent introduction restricting the time period up to April 2020
instead of December 2020. Table A5 shows that the adoption effects are very similar, with
a 149% increase in the number of SHS applicants. Given the smaller sample, the effect is
imprecisely estimated, with a p-value of 0.12.

At the customer level, we find that there are no extensive margin impacts on the prob-
ability that a customer makes a payment, nor on their utilization rate (Table 6). While
not statistically significant, there is a small increase in the number of payments of 16%,
accompanied by average payment sizes that are 27% smaller. These results should be
interpreted with caution due to the presence of pre-trends in some of the effects (Figure
6).

As discussed in Prediction 5 and Section C.3, in the absence of liquidity constraints,
we would expect payment frequency to increase when it becomes relatively cheaper for
customers to smooth their payments. However, when liquidity constraints are present,
reducing transaction costs also has an offsetting effect; it alleviates the income constraint,
allowing more customers to make bulk purchases. We interpret the null effects on pay-
ment frequency as consistent with this ambiguous effect and as additional evidence of
an income effect from reducing transaction costs which puts downward pressure on the
number of payments as customers are able to afford larger purchases of electricity.

6 Conclusion

Transaction costs in making bill payments play a crucial role in contexts with liquidity
constraints and may undermine the effectiveness of policies aimed at providing essential
services like electricity. In this study, we examine a context where these costs are partic-
ularly burdensome: survey data we collected reveals that transaction costs account for
approximately 28% of the total cost of electricity in rural Togo, rising to 43% in the most
remote regions (75th percentile). These high transaction costs significantly weaken the
impact of subsidy policies designed to boost solar panel adoption rates.
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We present four key pieces of evidence to support this conclusion. First, while the
subsidy more than doubled electricity access, the increase in adoption is substantially
larger in villages with mobile money agents. We attribute this to the high transaction
costs in areas without nearby mobile money agents. This finding remains robust even
after accounting for various confounders, including wealth disparities across villages.
Second, the subsidy enables bulk purchases for existing customers by making it more
affordable to reduce payment frequency. Third, the expansion of mobile money agents
leads to a nearly threefold increase in adoption rates. Fourth, we find no statistically
significant effects on payment frequency, indicating that the income effect partially offsets
any potential increase in the number of payments as lower transaction costs enable bulk
purchases.

These findings highlight the importance of addressing transaction costs to enhance
the effectiveness of price reduction policies, especially in settings with high liquidity
constraints. This has direct policy implications. We believe that two key features of
this study—the analysis of two nationwide policies targeting electricity costs in differ-
ent ways, combined with multiple data sources—contribute to the broader literature on
market frictions that impede access to essential services in developing economies.
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Figures and Tables

Figure 1: Districts of Togo by Subsidy Launch Date

Notes: The figure illustrates the spatial distribution of subsidy program rollout across Togo’s districts. Districts shaded in the lightest
hue represent the first phase, where the program launched in March 2019. Districts in a slightly darker shade indicate the second
phase, beginning in May 2019. The darkest shaded districts correspond to the final phase, initiated in July 2019.
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Figure 2: Subsidy Impact on SHS Adoption

Notes: This figure displays village-level dynamic ITT effects of subsidy eligibility on solar home system (SHS) adoption, estimated
by equation 1, following Sun and Abraham (2021). Our empirical strategy compares villages in districts that launched the subsidy in
March and May 2019 (treatment group) to villages in districts that launched it in July 2019 (control group). The outcome variable is
the number of SHS applications per month in each village. The number in parentheses at the point (0,0) denotes the mean value of the
outcome in the control group prior to subsidy launch. The dashed vertical lines are 95% confidence intervals using standard errors
clustered at the village level. Table 1 aggregates the dynamic effects into a single average effect.
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Figure 3: Heterogeneous Subsidy Impacts on SHS Adoption by Mobile Money Agent
Access

Notes: This figure displays village-level heterogeneous ITT effects of subsidy eligibility on solar home system (SHS) adoption, esti-
mated by equation 4 , following Sun and Abraham (2021). Our empirical strategy compares villages in districts that launched the
subsidy in March and May 2019 (treatment group) to villages in districts that launched it in July 2019 (control group). The subsidy’s
impact for villages that had a mobile money agent prior to subsidy launch is shown in red, and the impact for villages without an
agent in blue. The outcome variable is the number of SHS applications per month in each village. The number in parentheses at the
point (0,0) denotes the mean value of the outcome in the control group prior to subsidy launch. The dashed vertical lines are 95%
confidence intervals using standard errors clustered at the village level. Table 1 aggregates the dynamic effects into a single average
effect and tests whether it differs between villages with and without a mobile money agent.
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(a) Reduction in payment frequency

(b) Negligible reduction in payment size (c) No change in share of days with electricity

Figure 4: Subsidy Impacts on Customer Payments and Consumption

Notes: This figure displays customer-level dynamic ITT effects of subsidy eligibility on monthly electricity payment and consumption
behavior, estimated by equation 3, following Sun and Abraham (2021). Our empirical strategy compares customers in districts that
launched the subsidy in March and May 2019 (treatment group) to customers in districts that launched it in July 2019 (control group).
To ensure a balanced panel, the sample is restricted to customers that had joined by November 2018, a few months before subsidy
launch. Panel a) displays impacts on payment frequency, defined as the number of days per month in which a customer paid for
electricity. In panel b) the outcome is the average size of each payment made that month. The size of each payment is measured in
terms of the number of days of electricity purchased. The outcome equals zero if no payment was made that month. In Panel c) the
outcome is the proportion of days in the month in which the customer had access to electricity. The number in parentheses at the point
(0,0) denotes the mean value of the outcome in the control group prior to subsidy launch. The dashed vertical lines are 95% confidence
intervals using standard errors clustered at the customer level. Table 4 aggregates the dynamic effects into a single average effect, and
tests whether the impacts differ by pre-subsidy mobile money agent access.
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Figure 5: Mobile Money Agent Expansion Impacts on SHS Adoption

Notes: This figure displays village-level ITT effects of having a mobile money agent introduced in the village, on solar home system
(SHS) adoption, estimated by equation 6, following Sun and Abraham (2021). Our empirical strategy compares villages that received a
mobile money agent between September 2019 and March 2020 through the agent expansion policy described in section 2.5, to villages
that received an agent in later, in 2021, due to an abrupt halt caused by COVID. The analysis is conducted at the bimonthly frequency.
The outcome variable is the number of SHS applications per bimonth in each village. The number in parentheses at the point (0,0)
denotes the mean value of the outcome in the control group prior to the launch of the agent expansion policy. The dashed vertical
lines are 95% confidence intervals using standard errors clustered at the village level. Table 5 aggregates the dynamic effects into a
single average effect.
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(a) No effect on probability of payment
(b) Small positive effects on payment frequency

(c) No effect on payment size (d) No effect on share of days with electricity

Figure 6: Mobile Money Agent Expansion Impacts on Payments and Consumption

Notes: This figure displays customer-level ITT effects of having a mobile money agent introduced in the village, estimated by equation
6, following Sun and Abraham (2021). Our empirical strategy compares customers in villages that received a mobile money agent
between September 2019 and March 2020 through the agent expansion policy described in section 2.5, to customers in villages that
received an agent later, in 2021, due to an abrupt halt caused by COVID. The analysis is conducted at the bimonthly frequency. Panel
a) displays the results for a binary outcome variable equal to one if the customer made any payment in the bimonthly period. Panel
b) displays impacts on payment frequency, defined as the number of days per bi-month in which a customer paid for electricity. In
panel c) the outcome is the average size of each payment made that bi-month. The size of each payment is measured in terms of the
number of days of electricity purchased. The outcome equals zero if no payment was made that month. In Panel d) the outcome is
the proportion of days in the bi-month in which the customer had access to electricity. The number in parentheses at the point (0,0)
denotes the mean value of the outcome in the control group prior to the launch of the agent expansion policy. The dashed vertical
lines are 95% confidence intervals using standard errors clustered at the village level. Table 6 aggregates the dynamic effects into a
single average effect and tests whether it differs between villages with and without a mobile money agent.

35



Table 1: Subsidy Impacts on SHS Adoption

(1) (2)
By Mobile Money Agent Access

(a) (b) (c)
All Villages Has Agent No Agent Difference

Monthly SHS Applications 0.415*** 0.988*** 0.385*** 0.603***
(0.069) (0.217) (0.085)

Control Mean 0.278 0.521 0.252
Effect relative to control mean 149% 190% 153%
P-val: pre-periods = 0 0.205 0.468 0.077
Number of villages 2,686 517 1,704
Observations 18,802 3,619 11,928

Notes: This table displays village-level ITT effects of subsidy eligibility on solar home system (SHS) adoption, defined as the number
of monthly SHS applications in the village. Our empirical strategy compares villages in districts that launched the subsidy in March
and May 2019 (treatment group) to villages in districts that launched it in July 2019 (control group).
Column (1) shows the average ITT effect for the full sample of villages. We obtain this in two steps, following Sun and Abraham
(2021): first, we estimate the dynamic ITT effects with equation 1. Second, we obtain the average effect and associated standard error
by testing the null hypothesis that the average of the dynamic effects equals zero (equation 2).
Columns (2) (a) (b) display the average effect in villages with and without a mobile money agent. We obtain these by estimating
equation 4, which yields a set of separate dynamic effects for each subgroup, and then. aggregating them into an average effect using
the same procedure as in equation 2. Column (2) (c) tests the hypothesis that the difference in treatment effects between villages with
and without mobile money agents is zero.
The control mean corresponds to the mean of the outcome in the control group prior to subsidy launch. To asses parallel pre-trends,
we report the p-value of the joint test that the coefficients in all pre-periods equal zero. Standard errors, clustered at the village level,
shown in parentheses. *, ** and ***, denote significance at the 10, 5 and 1% level, respectively.
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Table 2: Ruling out Alternative Explanations for Subsidy Impacts

(1) (2) (3)
Heterogeneity Bin: Top 20th Percentile Bottom 80th Percentile Difference

Panel A) By Village Wealth
Monthly SHS Applications 0.921*** 0.607*** 0.313

(0.300) (0.115) (0.315)
Control Mean 0.485 0.347
Effect relative to control mean 190% 175%
P-val: pre-periods = 0 0.895 0.125
Number of villages 326 1,305
Observations 2,282 9,135

Panel B) By Population Density
Monthly SHS Applications 0.093 0.446*** -0.353

(0.196) (0.083) (0.209)
Control Mean 0.267 0.237
Effect relative to control mean 35% 188%
P-val: pre-periods = 0 0.664 0.450
Number of villages 435 1,744
Observations 3,045 12,208

Panel C) By Village Subsidy Receipt
Monthly SHS Applications 0.407*** 0.417*** -0.010

(0.072) (0.082) (0.103)
Control Mean 0.224 0.255
Effect relative to control mean 182% 164%
P-val: pre-periods = 0 0.493 0.161
Number of villages 531 2,155
Observations 3,717 15,085

Notes: This table displays heterogeneous village-level ITT effects of subsidy eligibility on solar home system (SHS) adoption, defined as
the number of monthly SHS applications in the village. Our empirical strategy compares villages in districts that launched the subsidy
in March and May 2019 (treatment group) to villages in districts that launched it in July 2019 (control group). Each panel estimates
heterogeneous effects by a potential confounder correlated with mobile money agent access. For each confounder, we define a binary
variable that equals one if the village is in the top 20% of the distribution of the confounding variable, and zero otherwise. We then
estimate heterogeneous treatment effects by this variable using equation 4. Panel A uses a geospatial index of village wealth Chi et al.
(2022). Panel B uses population density within a 3km radius around each village, based on geospatial population density estimates
from WorldPop. Panel C uses the share of customers in each village receiving the subsidy in the first few months of subsidy launch.
Columns (1) and (2) display the average effects for villages in the top 20% and bottom 80% of the confounder. Column (3) tests the
hypothesis that the difference in treatment effects between villages with and without mobile money agents is zero (equation 5). The
control mean corresponds to the mean of the outcome in the control group, within each heterogeneity bin, prior to subsidy launch.
To asses parallel pre-trends, we report the p-value of the joint test that the coefficients in all pre-periods equal zero. Standard errors,
clustered at the village legel, shown in parentheses. *, ** and ***, denote significance at the 10, 5 and 1% level, respectively.
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Table 3: Heterogeneous Subsidy Impacts within Bins of Potential Confounders

Panel A) By Village Wealth
High Wealth Low Wealth

Has No Diff. Has No Diff.
Agent Agent Agent Agent

Monthly SHS Applications 1.266*** 0.562*** 0.704** 0.971*** 0.512*** 0.459
(0.326) (0.130) (0.343) (0.364) (0.182) (0.392)

Control Mean 0.561 0.373 1.135 0.365
Effect relative to control mean 226% 151% 86% 140%
P-val: pre-periods = 0 0.870 0.707 0.707 0.142
Number of villages 310 504 104 713
Observations 2,170 3,528 728 4,991

Panel B) By Population Density
High Population Density Low Population Density

Has No Diff. Has No Diff.
Agent Agent Agent Agent

Monthly SHS Applications 0.610* 0.309*** 0.301 1.053*** 0.377** 0.677**
(0.334) (0.113) (0.347) (0.317) (0.151) (0.342)

Control Mean 0.475 0.296 0.453 0.196
Effect relative to control mean 128% 104% 232% 192%
P-val: pre-periods = 0 0.112 0.920 0.920 0.196
Number of villages 234 656 184 724
Observations 1,638 4,592 1,288 5,068

Panel C) By Village Subsidy Receipt
High Subsidy Receipt Low Subsidy Receipt

Has No Diff. Has No Diff.
Agent Agent Agent Agent

Monthly SHS Applications 1.041*** 0.467*** 0.574* 1.142*** 0.443*** 0.699*
(0.330) (0.124) (0.340) (0.349) (0.153) (0.375)

Control Mean 0.708 0.271 0.521 0.329
Effect relative to control mean 147% 172% 219% 135%
P-val: pre-periods = 0 0.428 0.261 0.261 0.006
Number of villages 195 606 260 810
Observations 1,365 4,242 1,820 5,670

Notes: This table tests whether the heterogeneous adoption effects by mobile money agent access hold within bins of potential con-
founders. The outcome variable is the number of monthly SHS applications in the village. Our empirical strategy compares villages in
districts that launched the subsidy in March and May 2019 (treatment group) to villages in districts that launched it in July 2019 (con-
trol group). Each panel splits the sample by above/below median values of the confounder and estimates heterogeneous treatment
effects by mobile money agent access within each bin, following equation 4, The first two columns under each subheading display the
average effect in villages with and without mobile money agent, respectively. The third column tests the hypothesis that the difference
in treatment effects between villages with and without mobile money agents is zero. The confounder in Panel A is a geospatial index
of village wealth Chi et al. (2022). Panel B uses population density within a 3km radius around each village, based on geospatial
population density estimates from WorldPop. Panel C uses the share of customers in each village receiving the subsidy in the first few
months of subsidy launch. The control mean corresponds to the mean of the outcome in the control group, within each heterogeneity
bin, prior to subsidy launch. To asses parallel pre-trends, we report the p-value of the joint test that the coefficients in all pre-periods
equal zero. Standard errors, clustered at the village legel, shown in parentheses. *, ** and ***, denote significance at the 10, 5 and 1%
level, respectively.
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Table 4: Subsidy Impacts on Customer Payments and Consumption

(1) (2) (3)
Number of Payments Average Payment Utilization Rate

Size (in days)
Panel A) Average Effect

Subsidy impact -0.375*** -0.851* -0.004
(0.053) (0.493) (0.007)

Control Mean 2.068 22.954 0.915
Effect relative to control mean -18% -4% -0%
P-val: pre-periods = 0 0.131 0.597 0.351
Number of customers 3,423 3,423 3,423
Observations 21,322 21,322 21,322

Panel B) Customers with Mobile Money Agent in Village
Subsidy impact -0.329*** -0.972 -0.005

(0.069) (0.616) (0.010)
Control Mean 2.952 16.940 0.929
Effect relative to control mean -11% -6% -1%
P-val: pre-periods = 0 0.335 0.798 0.799
Number of customers 1,262 1,262 1,262
Observations 8,006 8,006 8,006

Panel C) Customers without Mobile Money Agent in Village
Subsidy impact -0.399*** -0.813 -0.003

(0.057) (0.547) (0.008)
Control Mean 2.386 19.412 0.911
Effect relative to control mean -17% -4% -0%
P-val: pre-periods = 0 0.186 0.415 0.138
Number of customers 2,153 2,153 2,153
Observations 13,260 13,260 13,260

Panel D) Heterogeneous Impact: β in Panel B - β in panel C
Subsidy impact 0.070 -0.159 -0.002

(0.063) (0.604) (0.010)

Notes: This table displays customer-level ITT effects of subsidy eligibility on electricity payment and consumption. Our empirical
strategy compares customers in districts that launched the subsidy in March and May 2019 (treatment group) to customers in districts
that launched it in July 2019 (control group). To ensure a balanced panel, the sample is restricted to customers that had joined by
November 2018.
Panel A shows the average ITT effect for the full sample of villages. We obtain this in two steps, following Sun and Abraham (2021):
first, we estimate the dynamic ITT effects with equation 3. Second, we obtain the average effect and associated standard error by
testing the null hypothesis that the average of the dynamic effects equals zero (equation 2).
Panels B and C display the average effect in villages with and without a mobile money agent, respectively. We obtain these by
estimating equation 4, which yields a set of separate dynamic effects for each subgroup, and then aggregating them into an average
effect using the same procedure as in equation 2.
Panel D tests the hypothesis that the difference in treatment effects between villages with and without mobile money agents is zero.
The control mean corresponds to the mean of the outcome in the control group prior to subsidy launch. To asses parallel pre-trends,
we report the p-value of the joint test that the coefficients in all pre-periods equal zero. Standard errors, clustered at the village legel,
shown in parentheses. *, ** and ***, denote significance at the 10, 5 and 1% level, respectively.
The outcomes in columns (1) - (3) are: payment frequency, defined as the number of days per month in which a customer paid for
electricity; the average size of each payment; the proportion of days each month in which the customer had access to electricity. s
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Table 5: Mobile Money Agent Expansion Impacts on SHS Adoption

(1) (2)
SHS Applications 1{Any SHS Application}

Agent Arrival 0.884** 0.148
(0.451) (0.090)

Control Mean 0.47 0.29
Effect relative to control mean 188% 51%
P-val: pre-periods = 0 0.328 0.207
Number of villages 101 101
Observations 1,212 1,212

Notes: This table displays village-level ITT effects of having a mobile money agent introduced in the village,
on solar home system (SHS) adoption, estimated by equation 6, following Sun and Abraham (2021). Our
empirical strategy compares villages that received a mobile money agent between September 2019 and March
2020 through the agent expansion policy described in section 2.5, to villages that received an agent in later, in
2021, due to an abrupt halt caused by COVID. The analysis is conducted at the bimonthly frequency and the
ITT effects are estimated from the period September 2019 - December 2020. We obtain the static average effect
by averaging the dynamic effects, as in equation 2. The outcome variable in column (1) is the number of SHS
applications per bimonth in each village. The outcome variable in column (2) is a dummy variable that equals
one if the village had any SHS applicants in the bimonth. The control mean corresponds to the mean of the
outcome in the control group prior to mobile money agent expansion. To asses parallel pre-trends, we report
the p-value of the joint test that the coefficients in all pre-periods equal zero. Standard errors, clustered at the
village level, shown in parentheses. *, ** and ***, denote significance at the 10, 5 and 1% level, respectively.
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Table 6: Mobile Money Agent Expansion Impacts on Customer Payments and Con-
sumption

(1) (2) (3) (4)
Number of Made a Average Payment Utilization
Payments Payment Size (in days) Rate

Agent Arrival 0.511 -0.009 -2.670** 0.004
(0.452) (0.043) (1.185) (0.036)

Control Mean 3.20 0.61 9.91 0.50
Effect relative to control mean 16% -1% -27% 1%
P-val: pre-periods = 0 0.023 0.006 0.038 0.037
Number of customers 632 632 632 632
Observations 7,584 7,584 7,584 7,548

Notes: This table displays customer-level ITT effects of having a mobile money agent introduced in the village, on payment
and consumption behavior, estimated by equation 6, following Sun and Abraham (2021). Our empirical strategy compares
customers in villages that received a mobile money agent between September 2019 and March 2020 through the agent ex-
pansion policy described in section 2.5, to customers in villages that received an agent in later, in 2021, due to an abrupt halt
caused by COVID. The analysis is conducted at the bimonthly frequency. We obtain the static average effect by averaging
the dynamic effects, as in equation 2. The outcome variable in column (1) is a binary outcome variable equal to one if the
customer made any payment in the bimonthly period. Column (2) displays impacts on payment frequency, defined as the
number of days per bi-month in which a customer paid for electricity. In column (3), the outcome is the average size of each
payment made that bi-month. The size of each payment is measured in terms of the number of days of electricity purchased.
The outcome equals zero if no payment was made that month. Column (4) shows impacts on the proportion of days in the
bi-month in which the customer had access to electricity. The control mean corresponds to the mean of the outcome in the
control group prior to mobile money agent expansion. To asses parallel pre-trends, we report the p-value of the joint test that
the coefficients in all pre-periods equal zero. Standard errors, clustered at the village level, shown in parentheses. *, ** and
***, denote significance at the 10, 5 and 1% level, respectively.
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A Appendix Figures

Figure A1: Distance to Nearest Mobile Money Agent Before the Subsidy

Notes: This figure plots the distribution of customers’ distance to the nearest mobile money agent in January 2019, two months
before the subsidy was rolled out. To calculate the distance to the nearest mobile money agent, we combine data from the Togolese
government, detailing the longitude and latitude of all mobile money agents in the country from 2010 to 2024, on a monthly or yearly
basis, with the coordinates of villages in our sample.
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Figure A2: Distance to Nearest Mobile Money Agent Across all Villages

Notes: This figure plots the distribution of village distance to the nearest mobile money agent in January 2019, two months before the
subsidy was rolled out. This includes the entire universe of villages we observe in our data at any point. To calculate the distance to
the nearest mobile money agent, we combine data from the Togolese government, detailing the longitude and latitude of all mobile
money agents in the country from 2010 to 2024, on a monthly or yearly basis, with the coordinates of villages in our sample.
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Figure A3: Subsidy Receipt and Payment using Own Mobile, by Subsidy Launch Date

Notes: This figure plots the proportion of total payments (i) receiving the subsidy and (ii) paying using their own personal phone (a
precondition to receiving the subsidy) by subsidy rollout group (the first set of districts implemented the subsidy in March 2019, a
second group in May 2019 and the last group in July 2019, as outlined in Section 4.2.1). The limited take-up of the subsidy is discussed
in Section 2.4.
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Figure A4: Mobile Money Agent Expansion

Notes: This figure plots the evolution of the number of villages with a mobile money agent within 3km, due to the expansion campaign
described in Section 2.5. The first wave of the expansion took place between September 2019 and April 2020.
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Figure A5: Map of Mobile Money Agent Expansion

Notes: This map shows the spatial distribution of the mobile money agent expansion described in Section 2.5. The red dots represent
the locations of villages that received a mobile money agent within 3km as a result of the expansion policy. We leverage the scattered
nature of the expansion in our identification strategy described in section 4.2.3.
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Figure A6: Histogram of Days of Electricity Consumed per Month at Baseline

Notes: This histogram plots the distribution of the number of days in each month that a customer has electricity. The sample is
restricted to existing customers by December 2018.
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Figure A7: Histogram of Number of Payments per Month at Baseline

Notes: This histogram plots the distribution of the number of payments customers make each month. The sample is restricted to
existing customers by December 2018.
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Figure A8: Map of Relative Wealth Index across Togo

Notes: This map shows the spatial distribution of relative wealth in Togo, as measured by Meta’s Relative Wealth Index. This is a global
geospatial database based on Chi et al. (2022) which combines household survey data with non-traditional data sources (including
satellite imagery, cellular network data), as described in Section 4.1.
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Figure A9: New applicants in subsidized and un-subsidized districts

Notes: This figure plots the total number of new SHS applicants by subsidy rollout group. The first set of districts implemented the
subsidy in March 2019, a second group in May 2019 and the last group in July 2019, as outlined in Section 4.2.1.
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Figure A10: SHS Applications and COVID-19

Notes: This figure plots the total number of new SHS applicants in villages used in the analysis of the mobile money agent expansion
policy, described in Section 2.5. These are villages that received a mobile money agent through the expansion policy at different points
between September 2019 to March 2020 (the ‘treatment villages”), and in 2021 (“control group villages”).
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B Appendix Tables

Table A1: Summary Statistics Pre- and Post-Subsidy Customers

(1) (2) (3)
Pre-subsidy Post-subsidy (May 2020) Test of Difference

(February 2019)

Panel A. Demographics
HH’s age at adoption 40.71 39.80 (-3.36***)

(11.26) (11.75)
Female-headed Households (%) 1.60 2.48 (2.03*)

(12.54) (15.56)
Customer income: agriculture (%) 77.53 70.54 (-3.16***)

(41.74) (45.59)
Customer income: own biz (%) 9.86 14.51 (3.43***)

(29.81) (35.22)
Customer income: employee (%) 10.53 11.47 (1.59)

(30.69) (31.87)
Customer income: other (%) 2.08 3.48 (2.98***)

(14.28) (18.33)
Panel B. Previous Energy Sources

Any Electricity Sources (%) 2.22 1.34 (-1.82*)
(14.74) (11.48)

Solar (%) 1.27 0.68 (-1.63)
(11.21) (8.20)

Grid (%) 0.44 0.36 (-0.74)
(6.62) (5.95)

Generator (%) 0.51 0.30 (-1.58)
(7.12) (5.50)

Flashlight (%) 44.01 26.56 (-4.57***)
(49.65) (44.17)

Kerosene/Lantern/None (%) 52.75 71.46 (5.03***)
(49.93) (45.16)

Panel C. Electricity Behavior
Basic Kit (Light+Charger) (%) 27.53 39.04 (6.91***)

(44.67) (48.79)
Plus Kit (Above+Radio) (%) 29.48 20.64 (-4.19***)

(45.60) (40.47)
Premium Kit (Above+TV) (%) 42.99 40.32 (-1.49)

(49.51) (49.06)
Number of Payment Days 1.65 1.94 (6.12***)

(1.41) (1.76)
Average Payment Size (in days) 28.02 16.49 (-14.82***)

(26.36) (12.33)
Utilization Rate (%) (%) 90.98 87.96 (-5.66***)

(20.31) (22.07)

Number of Customers 4322 11523

Notes: The table summarizes the characteristics of the consumers available in our data, for demographic variables (Panel A),
energy sources (Panel B) and electricity behavior (Panel C). Column (1) show the mean values of each variable for customers
who joined by February 2019. before the subsidy. and who received the subsidy by December 2019. Column (2) shows the mean
values for all customers who had joined by May 2020, nearly a year after the subsidy. Standard deviations in brackets. The
third column shows the t-stat of the difference between the baseline and endline group of consumers, where the following OLS
regression equation, controlling for district fixed effect, is performed: Yi = βMay2020 + Districti + ϵi, with standard errors
clustered at the district-level. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A2: Balance Table Across Groups of Districts - Government Data

(1) (2) (3) (4) (5)
Group 1 Group 2 Group 3 F-stat ANOVA N All districts

Electrified households (%) 5.00 16.54 23.18 (26.37***) 35 15.00
(0.00) (6.58) (7.83) (9.39)

# of districts 11 13 11 35

Notes: The table summarizes the electrification rates of the districts within the three groups. This is based on data collected
in 2016 from the Government of Togo (data is unavailable for one out of thirty-six districts). The first three columns show
the mean values of the district averages for each of the three groups of districts treated at different times, with standard
deviations in parentheses. The electrification rates are provided by the Government in ranges, and so the midpoint of the
range is used for each district average (all districts in Group 1 have electrification rates between 0 and 10%, hence the 5%
mean with no standard deviation). The fourth column shows the F-stat of the one-way analysis-of-variance (ANOVA) model
to test for differences in means across the three groups. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A3: Balance Table Across Groups of Districts

February 2019 (1) (2) (3) (4) (5)
Group 1 Group 2 Group 3 F-stat ANOVA N All districts

Panel A. Demographics
HH’s age at adoption 40.25 39.92 41.64 (1.74) 36 40.59

(2.63) (2.79) (1.62) (2.46)
Female-headed Households (%) 0.74 1.44 3.35 (5.45***) 36 1.86

(1.21) (1.56) (2.79) (2.22)
Customer income: agriculture (%) 83.04 77.22 66.88 (2.50*) 36 75.55

(15.21) (17.59) (19.60) (18.37)
Customer income: own biz (%) 8.13 10.20 15.71 (2.35) 36 11.40

(8.22) (8.66) (9.28) (9.07)
Customer income: employee (%) 7.28 10.14 14.58 (1.82) 36 10.75

(6.49) (8.54) (11.86) (9.50)
Customer income: other (%) 1.56 2.44 2.83 (0.71) 36 2.30

(2.08) (2.80) (2.82) (2.59)
Panel B. Previous Energy Sources for Lighting

Any Electricity Sources (%) 2.53 1.46 2.38 (0.51) 36 2.09
(3.66) (2.28) (2.50) (2.80)

Solar (%) 1.26 0.91 1.23 (0.11) 36 1.12
(2.43) (2.09) (1.64) (2.01)

Grid (%) 0.79 0.07 0.75 (2.27) 36 0.52
(1.15) (0.17) (1.22) (0.99)

Generator (%) 0.47 0.49 0.40 (0.02) 36 0.45
(0.78) (1.26) (0.95) (1.00)

Flashlight (%) 48.04 42.22 50.57 (0.28) 36 46.78
(29.42) (29.83) (26.08) (27.92)

Kerosene/Lantern/None (%) 48.44 55.49 46.32 (0.36) 36 50.28
(26.82) (30.60) (27.04) (27.80)

Panel C. Electricity Behavior
Basic Kit (Light+Charger) (%) 28.32 29.93 22.86 (0.66) 36 27.08

(14.45) (21.25) (8.90) (15.78)
Plus Kit (Above+Radio) (%) 25.60 32.16 20.83 (1.46) 36 26.38

(16.47) (20.36) (11.49) (16.86)
Premium Kit (Above+TV) (%) 46.08 37.91 56.31 (2.59*) 36 46.54

(24.14) (19.51) (16.83) (21.13)
Number of Payment Days 1.60 1.53 1.90 (4.44**) 36 1.67

(0.33) (0.27) (0.36) (0.35)
Average Payment Size (in days) 35.90 30.79 26.11 (1.57) 36 30.79

(21.94) (8.27) (3.74) (13.46)
Utilization Rate (%) 91.81 92.29 92.54 (0.11) 36 92.23

(3.77) (4.29) (3.28) (3.72)

# of districts 11 13 12 36
# of consumers per district 154 115 94 120

Notes: The table summarizes the characteristics of customers who joined by February 2019, before the subsidy, and who receive the subsidy at some
point by December 2019. Panel A displays demographic, population, and past energy sources variables, and Panel B electricity behavior variables.
The first three columns show the mean values of the district averages for each of the three groups of districts treated at different times. This is
measured at baseline, before the subsidy intervention in February 2019, with standard deviations in parentheses. The fourth column shows the
F-stat of the one-way analysis-of-variance (ANOVA) model to test for differences in means across the three groups. * p < 0.10, ** p < 0.05, ***
p < 0.01.
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Table A4: Relationship between Subsidy Receipt and Mobile Money Agent Proximity

Subsidy received within the first two months
(1) (2) (3) (4)

Momo Agent Within 3km of the Village 0.032 0.038 0.037 0.029
(0.044) (0.043) (0.039) (0.039)

Constant 0.671∗∗∗ 0.623∗∗∗ 0.688∗∗∗ 0.629∗∗∗

(0.037) (0.041) (0.034) (0.039)
Cohort Fixed Effects No Yes No Yes
Cohorts 1 & 2 1 & 2 All All
R-squared 0.001 0.015 0.001 0.019
Observations 565 565 750 750

Notes: Regressions of an indicator variable for receiving the subsidy within the first two months of eligibility on
pre-subsidy access to a mobile money agent within 3km. Sample restricted to customers used in the heterogeneity
analysis (i.e., they either had an agent within 3km or eventually received one between June-December 2019). First
two columns include customers that became eligible for the subsidy in March and May 2019. The last two columns
include all customers. Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A5: Adoption impacts of mobile money agent introduction, omitting COVID period

(1) (2)
SHS Applications 1{Any SHS Application}

Agent arrival 0.698 0.122
(0.448) (0.096)

Control Mean 0.47 0.29
Effect relative to control mean 149% 42%
P-val: pre-periods = 0 0.326 0.205
Number of villages 101 101
Observations 808 808

Notes: This table re-estimates the results in Table 5, but stops the analysis period at April 2020, instead of
December 2020. The table displays village-level ITT effects of having a mobile money agent introduced in the
village, on solar home system (SHS) adoption, estimated by equation 6, following Sun and Abraham (2021).
Our empirical strategy compares villages that received a mobile money agent between September 2019 and
March 2020 through the agent expansion policy described in section 2.5, to villages that received an agent in
later, in 2021, due to an abrupt halt caused by COVID. The analysis is conducted at the bimonthly frequency.
We obtain the static average effect by averaging the dynamic effects, as in equation 2. The outcome variable in
column (1) is the number of SHS applications per bimonth in each village. The outcome variable in column (2)
is a dummy variable that equals one if the village had any SHS applicants in the bimonth. The control mean
corresponds to the mean of the outcome in the control group prior to mobile money agent expansion. To asses
parallel pre-trends, we report the p-value of the joint test that the coefficients in all pre-periods equal zero.
Standard errors, clustered at the village level, shown in parentheses. *, ** and ***, denote significance at the 10,
5 and 1% level, respectively.
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C Conceptual Framework

We develop a stylized framework to provide intuition for the role of transaction costs and
liquidity constraints in adopting SHS and in choosing the optimal frequency of electricity
payments. This framework provides us with five key predictions.

C.1 Setup

The environment consists of a continuum of ex-ante identical households, indexed by
i ∈ [0, 1], with two time periods, indexed by t = 1, 2. Each household draws a level of
exogenous income yi from a common distribution F (we also denote F̄ = 1 − F and
assume that F is twice differentiable, denoted by f and f ′)20. A household will choose
to adopt a solar home system (SHS) if the benefits from current and future electricity
consumption exceed the costs:

V (SHS) =

{
V (1), if SHS = 1

0, if SHS = 0.
(1)

For simplicity, as in Lee et al. (2020b), a household’s lifetime utility is normalized
to 0 in the absence of a solar home system; this implies that households always prefer
to have electricity if they can afford it. Given the setting in this paper, we assume that
households do not have access to alternative forms of electricity, which means that their
decision to become electrified is limited to adopting a SHS. Therefore, in this framework, a
household will adopt if it is sufficiently wealthy, which will depend on its income (yi), the
price per unit of electricity (p) and the fixed transaction cost (τ ) per electricity payment.
For simplicity, we ignore the downpayment cost of adoption here.21

A household’s is conditional on choosing an optimal payment plan in order to pur-
chase its inelastic demand for electricity and maximize its consumption. Each household
ranks its consumption decisions and payment plans according to the utility it accrues
from consumption. Following adoption, the household’s problem is as follows:22

V (1) = max
(c1,c2,d1,d2)∈R+×R+×N0×N0

u(c1) + βu(c2) subject to (2a)

at+1 = (1 + r)at + y − ct − 1{dt > 0}(pdt + τ) (2b)
et = et−1 − 1 + dt (2c)
et > 0, (a0, e0) = (0, 1) ∀t = 1, 2. (2d)

At the start of each period, households receive their exogenous income, y, a stock of

20Each household belongs to a village v. For simplicity, we assume that each village has the same income
distribution.

21The downpayment is not affected by the subsidy policy we study and is relatively small compared to
the value of the solar home system.

22Subscripts are used to denote time t while superscripts are used to denote household i, although we
suppress the i for simplicity.
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assets, at, and any interest earned on these assets at the rate of r. They then choose both
consumption, ct, and the number of days of electricity to purchase, dt. The households
rank consumption and payment plans according to a time-separable utility function, u(·),
which is non-negative, increasing and concave in consumption (u′(·) > 0 and u′′(·) < 0),
with a discount factor, β. The stock of electricity is et, the price for one unit of electricity
is p, and whenever the household makes a payment there is a fixed transaction cost of τ .

The law of motion for assets (Equation (2b)) is standard and we assume that house-
holds can either save, which will pay out (1+r) next period, or borrow at the cost of (1+r).
The law of motion for the stock of electricity (Equation (2c)) states that electricity today
is one less than electricity yesterday, plus any days of electricity purchased today. Lastly,
there are positivity constraints on the stock of electricity (Equation (2d)). This latter con-
straint imposes that households are not deciding how much electricity to consume, but
rather how to optimally purchase their stock of electricity. Thus the framework assumes
that electrification is an extensive margin decision and that once households decide to
purchase a solar home system, they desire to maintain a positive stock of electricity. We
therefore do not explicitly model the utility of electricity consumption relative to other
consumption, as this is not the margin of interest in our study.

In the first period, the household inherits no stock of electricity (or assets) and there-
fore must make a purchase. The household must then choose to either purchase only one
unit of electricity in this period and then make a second payment in the following pe-
riod (incurring transaction costs twice), or purchase two units of electricity in this period
and none in the following period (incurring transaction costs only once). The household
is essentially faced with two decisions: to either purchase in bulk, with dB = (2, 0), or
spread their payments, with dS = (1, 1). We denote n, the number of payments that each
household makes, which is a function of p, τ , and y with:

n = n(p, τ, y) = 1{d1 > 0}+ 1{d2 > 0}. (3)

Given the simple setting of the framework, we can denote the indirect utility function
for each payment plan d = (d1, d2) as a function of the number of payments, n, with v(n∗)
where n∗ = 1 if the household buys in bulk with d∗ = (2, 0) and n∗ = 2 if the household
spreads their payments with d∗ = (1, 1), conditional on the households choosing their
consumption optimally.

Finally, we also introduce liquidity-constraints, where households are unable to bor-
row against their future income. The following subsections will describe settings with and
without liquidity constraints to highlight their role in our framework. Formally, we also
introduce the assumption that households face an additional non-negativity constraint
on their asset stock:

at ≥ 0. (4)

This section proceeds in two parts. First, we consider the adoption decision of house-
holds. Secondly, we characterize the solution and determine the optimal frequency of
payments for electricity.
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C.2 Adoption

A necessary cutoff condition for adoption is that the household has enough income yi to
purchase electricity. This means that households must be able to purchase a total of two
days of electricity across the two time periods, and that they must be able to purchase at
least one day of electricity in the first time period. If the household’s income allows them
to purchase one day of electricity today, given that households earn identical exogenous
income y at the start of each period, this condition also implies that they will be able to
purchase electricity in the subsequent period. In the absence of liquidity-constraints, a
household can also borrow against their future income to purchase in bulk. Therefore,
household i will adopt if they satisfy the following affordability constraint:

yi > min

{
p+ τ,

1 + r

2 + r
(2p+ τ)

}
. (5)

If households face a liquidity constraint, the second option of borrowing against future
income is ruled out and the adoption decision simplifies to:

yi > p+ τ. (6)

In our analysis, we simplify the adoption process such that households adopt when
they can afford to, namely that the affordability constraint is indeed an adoption con-
straint23. Therefore, the proportion of households that satisfy the adoption constraint is
determined by 1−F (p+τ) = F̄ (p+τ). The framework predicts that levels of adoption are
lower in the presence of liquidity constraints, as they prevent households with incomes
between p+ τ and 1+r

2+r
(2p+ τ) from adopting.

We make three assumptions on the price of electricity, transaction costs, and income
distribution, namely that: (i) the income distribution F is unimodal, (ii) only relatively
wealthy households are able to adopt (those with incomes above the mode, denoted by
ȳmode), and (iii) the reduction in price induced by the subsidy is not sufficiently large to
shift the adoption threshold to households with incomes below the mode. These condi-
tions describe the setting in this paper, where most households in a village are relatively
homogeneous with a large majority working in agriculture, only a relatively small frac-
tion of households in each village are able to afford a solar home system, and, in response
to the subsidy, demand increases substantially but not overwhelmingly (especially be-
cause of the unaltered downpayment cost). Formally, these are assumptions require that:

F is unimodal and ȳmode < p+ τ. (7)

We characterize three predictions of the framework in the presence of liquidity con-
straints.

Price reductions increase adoption.
Transaction cost reductions increase adoption.

23We could extend the framework and formally introduce the utility of electricity to compare the trade-
offs between consumption and electricity. In this case, households would also factor their optimal payment
plan, outlined in Section C.3, into their adoption decision. This would imply a tighter adoption threshold
but does not substantially change our main predictions.
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For the Predictions 1 and 2, we have that levels of adoption are decreasing in price
and transaction costs24. This is because the adoption constraint (Equation (6)) is linear
in price and transaction costs such that reductions in p and τ will make the solar home
system more affordable to prospective households:

∂F̄ (p+ τ)

∂p
=

∂F̄ (p+ τ)

∂τ
= −f(p+ τ) < 0. (8)

There are complementary adoption effects of reducing price and transaction costs:
price reductions in villages with low transaction costs should have higher effects on adop-
tion than in villages with high transaction costs.

For Prediction 3, we have that the impact on adoption in response to a price reduc-
tion will be higher in areas with low transaction costs relative to those with high trans-
action costs25. The intuition is that in villages with low transaction costs, more house-
holds will be closer to the adoption threshold, such that a reduction in price will result in
a larger proportion of households crossing the adoption threshold, compared to house-
holds in villages with high transaction costs. This follows from a unimodal F and that
adoption occurs for relatively wealthy households (Equation (7))26. Therefore, this com-
plementarity is identified by the positive cross partial derivative:

∂2F̄ (p+ τ)

∂p∂τ
= −f ′(p+ τ) > 0 (9)

This third prediction highlights how policies that reduce prices and policies that re-
duce transaction costs are complementary in this setting, where transaction costs are rel-
atively high and households are liquidity-constrained. Specifically, reducing transaction
costs will enhance and amplify the impact of the subsidy on adoption, and thus rural
electrification efforts. The framework therefore predicts that the treatment effect of price
reductions will vary with baseline transaction costs.

C.3 Frequency of Payments for Electricity

After a household adopts a solar home system, it must determine the optimal number of
payments to make for its electricity. We first describe behavior in liquidity-unconstrained
settings and then detail how this changes with the introduction of liquidity constraints.

C.3.1 Liquidity-Unconstrained Households

In a setting without any liquidity constraints, the household’s budget constraint equates
the present value of consumption to the present value of income net of electricity pur-
chases:

24This assumes income is held constant.
25Assuming the same income distribution across these areas.
26The unimodal assumption implies that the probability density function f(·) is decreasing for incomes

above the modal income such that f ′(·) is negative. Our prediction is therefore symmetric, as it is reversed
if, instead, adoption has already occurred for households with incomes below the mode.
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c1 +
c2

1 + r
=


y − (2p+ τ) +

y

1 + r
, if n = 1

y − (p+ τ) +
y − (p+ τ)

1 + r
, if n = 2.

(10)

An interior solution satisfies the Euler equation for consumption: u′(c∗1) = β(1 +
r)u′(c∗2). We further assume that β(1 + r) = 1, which is standard and implies that
c∗ = c∗1 = c∗2: households will perfectly smooth consumption. The decision then becomes
whether to purchase electricity in bulk in the first period, or smooth payments across both
periods. This problem then simplifies to choosing the payment plan that maximizes the
present value of income, net of electricity purchases. If a household purchases in bulk,
its net income is lower today than tomorrow and so it will borrow against tomorrow’s
income. If a household spreads its payments, it will simply consume its net income in
each period. The intuition for this tradeoff is straightforward as a household will choose
to purchase in bulk only if the interest earned on making one less payment, p r, is less
than having to incur an additional transaction cost, τ , tomorrow. The optimal payment
plan is as follows:

n∗ =

{
1, if p r < τ

2, otherwise.
(11)

The framework makes two predictions in the absence of liquidity constraints: First, a
reduction in price will reduce the number of payments because it becomes more cost
effective to purchase in bulk as the price of electricity lowers. Second, a reduction in
the transaction cost will increase the number of payments because as it becomes more
cost effective to spread payments as the transaction cost for each payment becomes lower.
Formally, we have that27:

∆n∗

∆ p
≥ 0 and

∆n∗

∆ τ
≤ 0. (12)

The main insight here is that, without liquidity constraints, policies that reduce the price
of electricity and that reduce the transaction cost for each electricity payment will result
in opposite effects, and thus an ambiguous total effect on payment behavior.

C.3.2 Liquidity-Constrained Households

Suppose now that households are liquidity-constrained and are unable to borrow against
their future income. The optimality implication of this constraint is that the Euler equa-
tion will not always bind. There are two income ranges that we must consider in this case.
First, households whose incomes are below the bulk payment amount, yi ∈ (p+ τ, 2p+ τ ],
will be unable to purchase in bulk and must spread their electricity payments. House-
holds that can afford to purchase in bulk, yi > 2p + τ , face a clear tradeoff. If they pur-
chase in bulk, they will consume less today and more tomorrow (failing to satisfy the

27We ignore affordability constraints for an interior solution, as consumption must be positive (see Equa-
tion (5)).
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Euler equation with equality) but will only incur the transaction cost once. If they spread
their payments, they will have perfectly smooth consumption (satisfying the Euler equa-
tion with equality) but must incur a second transaction cost.

Liquidity constraints therefore have two key impacts on household behavior. First,
they impose a contemporaneous-income constraint for households that do not have enough
first-period income to buy in bulk and are unable to borrow against future income. Sec-
ond, they also impose a standard consumption-smoothing constraint, which applies partic-
ularly to households with relatively higher incomes who can afford to buy in bulk. For
these households, it is less appealing to buy in bulk (than in the unconstrained world)
because they unable to borrow against future income to optimally smooth their consump-
tion.

Formally, the optimal payment plans are as follows:

n∗ =

{
1, if v(1) ≥ v(2)

2, otherwise
(13a)

v(1) = u(y − [2p+ τ ]) + βu(y) (13b)
v(2) = u(y − [p+ τ ]) + βu(y − [p+ τ ]). (13c)

Let us denote the threshold level of income that a household will choose to purchase in
bulk by yB(p, τ) ≥ 2p + τ 28. This threshold exists because liquidity constraints prevent
customers from borrowing against future income. Households with incomes below this
threshold will spread payments and those above will purchase in bulk. The optimal pay-
ment plan will now depend on the relative position of a household’s income yi to this
threshold income yB(p, τ).

Assuming that the unconstrained optimum is to purchase in bulk (p r < τ ) and addi-
tionally that households have decreasing absolute risk aversion, then yB(p, τ) exists and
is unique. Moreover, this income threshold, yB(p, τ), is increasing in p but the relation is
ambiguous for τ , with the following inequalities29:

∂yB(p, τ)

∂p
> 1 and

∂yB(p, τ)

∂τ
< 1. (14)

We characterize two predictions of the framework.
Price reductions decrease payment frequency.
Transaction cost reductions have an ambiguous effect on payment frequency.
For Prediction 4, it is clear that reductions in price mean that more households can

afford to purchase in bulk, thus alleviating the contemporaneous-income constraint. Fur-
thermore, for those households already able to purchase in bulk, reductions in price also
make it possible to smooth consumption to a greater extent (in the absence of borrow-
ing), alleviating the consumption-smoothing constraint and making it more appealing to
purchase in bulk. These indirect effects amplify the direct effects outlined in the liquidity-

28This threshold may be larger than 2p+τ as the disutility from non-smooth consumption may dissuade
some households from purchasing in bulk even if they can afford to.

29Appendix Section C.4 for proofs and additional exposition for these claims.
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unconstrained setting; price reductions thus unambiguously reduce the number of pay-
ments, as in the case for liquidity-unconstrained households.

For Prediction 5, reductions in transaction costs, however, have a more ambiguous
effect. On the one hand, as in the liquidity-unconstrained case, lower transaction costs
make it less costly to make multiple payments and smooth consumption. On the other
hand, lower transaction costs alleviate the contemporaneous-income constraint, as more
households can afford to buy in bulk (in the absence of the ability to borrow against fu-
ture income). As such, the presence of liquidity constraints means that, depending on the
magnitudes of these relative effects, a reduction in transaction costs can actually decrease
the number of payments.

The directional effect of a price reduction on payment frequency is the same as in
the setting without liquidity constraints, as both direct and indirect effects move in the
same direction. However, reducing transaction costs can have a counter-intuitive effect
due to the presence of liquidity constraints. Even though the transaction cost reduction
makes it cheaper to smooth consumption, this can be outweighed by the alleviation of
the contemporaneous-income constraint as more households have enough first-period
income to afford to buy in bulk.

These predictions show that the presence of liquidity constraints can, under certain
conditions, lead to the counter-intuitive prediction of a decline in frequency when trans-
action costs are lowered. For this to hold, it must be the case that transaction costs are rel-
atively large such that the contemporaneous-income constraint is sufficiently restrictive.
The frictions in this environment can also drive complementarity between reductions in
price and reductions in transaction costs.

C.4 Deriving Properties of the Income Threshold for Purchasing in
Bulk

In the theoretical framework outlined in Section C.3, we are interested in deriving the
properties of yB(p, τ), the income threshold above which adopting households will opti-
mally choose to purchase their electricity in bulk. In the liquidity-unconstrained setting,
the solution is trivial as, if p r < τ , all households will purchase in bulk provided that
they can afford to adopt, such that yB(p, τ) = min

{
p+ τ, 1+r

2+r
(2p+ τ)

}
. In the liquidity-

constrained setting, there is no closed form solution but we can still derive first and sec-
ond order partial derivatives for yB(p, τ). Let us define I(p, τ, y) as the net utility of pur-
chasing in bulk relative to the utility from spreading payments; this function is equal to 0
when evaluated at yB:

I(p, τ, yB) = u(yB − (2p+ τ)) + βu(yB)− (1 + β)u(yB − (p+ τ)) = 0. (15)

First we prove existence and uniqueness of yB and identify sufficient conditions. It is
helpful to note that this problem can also be conceptualized through an analogous lottery
problem. After scaling the total utility function by 1

1+β
, the two period time-separable

utility function becomes a von Neumann–Morgenstern utility function. Now, we define
the option to purchase in bulk as investing in a risky asset R that with probability 1

1+β

yields −(2p + τ) and with probability β
1+β

yields 0, and we define the option to spread
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payments as investing in a safe asset with a certain outcome of c = −(p+τ). The expected
utilities of y +R and y + c represent the same preferences as before but scaled by 1

1+β
:

E[u(y +R)] =
1

1 + β
u(y − (2p+ τ)) +

β

1 + β
u(y), (16a)

E[u(y + c)] = u(y − (p+ τ)). (16b)

Therefore, at yB we have that E[u(yB + R)]− E[u(yB + c)] = 0, which is equivalent to
finding I(p, τ, yB) = 0. In this risk conceptualization, the income threshold yB is the level
of wealth at which the household is indifferent between choosing the risky asset and the
safe asset. As we have assumed that the household is risk averse from a concave utility, a
necessary condition for the existence of yB is that the expected payoff from the risky asset
R must be higher than the safe asset. Formally, we have that:

E[R] > c ⇐⇒ − 1

1 + β
(2p+ τ) > −(p+ τ) ⇐⇒ 1− β

β
p < τ ⇐⇒ p r < τ. (17)

The last expression holds because of the assumption that β(1+r) = 1. This is the iden-
tical condition that was derived in the liquidity-unconstrained setting (Equation (11)).
The assumption that it is optimal to purchase in bulk in a liquidity-unconstrained set-
ting is necessary for households to potentially choose to purchase in bulk in a liquidity-
constrained setting. Otherwise, the household would never choose the risky asset or to
purchase in bulk. Therefore, existence of yB(p, τ) depends on focusing on parameter val-
ues for which it would be optimal to purchase in bulk in an unconstrained world: p r < τ .

We make one additional assumption about the utility function: the household has
decreasing absolute risk aversion (DARA) preferences. If we define ρA = −u′′(c)/u′(c) as
the coefficient of absolute risk aversion, then DARA implies that:

dρA
dc

< 0 ⇐⇒ u′′(c)u′′(c) < u′(c)u′′′(c). (18)

The implication of Equation (18) is that the household becomes less risk averse against
additive changes in income when their income increases. Thus, the risk premium associ-
ated with the risky asset (for a fixed R) decreases with income. Therefore, at some income
level, the household’s coefficient of absolute risk aversion will be sufficiently low such
that it will choose to invest in the risky asset or, in our context, to purchase in bulk. This
proves the existence of yB.

An additional and important implication of this result is that, if the household prefers
y + R to y + c for some level of income y = y1, then the household must also prefer the
risky asset at any higher level of wealth y = y2 > y1. Importantly, this proposition implies
that there is a unique income threshold, yB, because for all incomes above this threshold,
the household will always prefer the risky asset and thus always prefer to purchase in
bulk. Therefore, there is only a single crossing point, proving the uniqueness of yB.

In order to derive the partial derivatives of yB(p, τ) with respect to price and transac-
tion costs, we apply the implicit function theorem. We have that the income threshold is
unambiguously increasing in p, while the income threshold is ambiguous in τ with the
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following bounds:

∂yB(p, τ)

∂p
> 1 and

∂yB(p, τ)

∂τ


< 0, if Iτ > 0

= 0 if Iτ = 0

∈ (0, 1), if Iτ < 0.

(19)

The proof is as follows. We have defined I(p, τ, yB) = 0 and if Iy ̸= 0 at this point, we
can express yB = h(p, τ) where the first order derivatives are:

∂yB(p, τ)

∂p
= hp = −Ip

Iy
and

∂yB(p, τ)

∂τ
= hτ = −Iτ

Iy
. (20)

We have the following first order partial derivatives for I(p, τ, yB):

Ip = −2u′(yB − (2p+ τ)) + (1 + β)u′(yB − (p+ τ)), (21a)
Iτ = −u′(yB − (2p+ τ)) + (1 + β)u′(yB − (p+ τ)), (21b)
Iy = u′(yB − (2p+ τ)) + βu′(yB)− (1 + β)u′(yB − (p+ τ)). (21c)

Assuming that the utility function is strictly increasing and concave and that β ∈ (0, 1),
we can conclude that for positive values of p and τ , the following relationships hold:

−Ip > Iy > −Iτ and Iy > 0 > Ip. (22)

The proof for these inequalities is as follows. We have that u′(yB − (2p+ τ)) > u′(yB −
(p + τ)) > u′(yB) > 0. First, Ip + Iy = −u′(yB − (2p + τ)) + βu′(yB) < 0. Second,
Iy + Iτ = βu′(y) > 0. Third, Ip < 0 because u′(yB − (p + τ)) < u′(yB − (2p + τ)) and
1 + β < 2. Fourth, at the solution for I(p, τ, yB) = 0, we have earlier shown that yB
is unique and that for all income levels above yB, the household will always prefer to
purchase in bulk such that I(p, τ, yB + ϵ) > 0 for ϵ > 0. Similarly, for income levels below
yB, the household will always prefer to spread payments such that I(p, τ, yB − ϵ) < 0.
Therefore, by taking the limit as ϵ → 0, we have that it must be that Iy > 0. Given these
conditions, we have proved that hp > 0 and so the income threshold is unambiguously
increasing in p. hτ , however, is ambiguous depending on the sign of Iτ . Furthermore,
given the strict inequalities in Equation (22), this also means that hp is bounded below by
1 and hτ is bounded above by 1 which concludes the proof for Equation (19).
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D Information Campaigns

One might expect the subsidy impact to be partly influenced by information campaigns,
conducted both by the solar company and the government. To partly address this con-
cern, we use the company’s data to measure the sensitivity of the subsidy’s impact to the
information campaigns.

The data analyzed is aggregated at the store level and focuses on marketing campaigns
conducted by the solar provider. Each store (a total of 22) is assigned to at least one
district, in which it is responsible for all information campaigns. This gives us data for
campaigns in a total of 29 districts. Inevitably, within each district, different villages will
be targeted differently by these campaigns. Unfortunately, we do not have access to such
granularity in the data, and therefore much of our analysis can only be conducted at the
district level.

We separate the campaigns into three categories: (i) market, which involves proac-
tive outreach in large market areas; (ii) radio, which includes radio advertisements and
shows; and (iii) other campaigns, which combine festivals, children targeted campaigns,
and door-to-door outreach. Figure 11 shows the number and type of information cam-
paigns conducted during each bi-month period, whilst Table 6 records the percentage
of District x Bi-months during which each campaign occurred. Market visits and radio
campaigns are the most frequently employed. Given the variation in Figure 11, one might
suppose that the introduction of the subsidy would have been accompanied by additional
information campaigns that could act as a potential confounder on the estimated impact
of the subsidy. Columns (2) and (3) of Table 6 show the proportion of District x Bi-months
for each information campaign for the two-month periods before and after the subsidy
launch in each district. These averages are not significantly different from each other,
which suggests no significant change in the extent of information campaigns during sub-
sidy launch, apart from the proportion of districts receiving radio ads, which declined at
the 10% significance level.

Generally, we find no significant change in the extent of information campaigns dur-
ing subsidy launch30 and no significant impacts of the campaigns on customer and village
adoption, both before and after the subsidy.

The limited impact of the information campaigns might however be attributed to the
lack of granularity in the data available. As discussed above, the data is at the store
level, and our analysis assumes that each store covers the entire district(s) assigned to
it. In reality, each store is only likely to run campaigns in a subset of villages within
each district. Ideally, more granular data would enable us to exploit this variation within
districts, which might provide greater insight into the specific impact of the campaigns.
It must also be noted that this data relates to specific marketing campaigns undertaken
by the solar company and not the broader work done by the government to raise general
awareness about the subsidy.

30Apart from the proportion of districts receiving radio ads, which declined at the 10% significance level.
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Table 6: Percentage of District x Bi-months targeted by marketing campaigns

(1) (2) (3) (4)
September 2018 2 months 2 months T-stat difference

- May 2020 pre-subsidy post-subsidy

Market 55.76 73.33 83.33 (1.14)
(49.74) (44.98) (37.90)

Radio 55.15 56.67 50.00 (-1.86*)
(49.81) (50.40) (50.85)

Other campaigns 33.86 17.24 20.69 (-0.33)
(47.40) (38.44) (41.23)

N 319 29 29

Notes: The table summarizes the proportion of districts targeted by various marketing campaigns across each
bi-month period. The first column shows this proportion over the full sample period (September 2018 - May
2020). The second and third columns show the proportion in the two months pre- and post- subsidy launch
(these specific months vary by prefecture). The fourth column shows the t-stat of the difference between the
two months pre- and post-subsidy, where the following OLS regression equation is performed Yi = βPost−
Subsidy+ϵi, with standard errors clustered at the district-level (with the sample restricted only to two months
pre- and post- subsidy launch). * p < 0.10, ** p < 0.05, *** p < 0.01.

Figure 11: Number of District-level Information Campaigns

Notes: This figure describes the number and types of information campaigns conducted by the solar com-
pany around the time of the subsidy launch.
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