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Ce cours n'a pas la prétention de constituer un traité
exhaustif de tout ce qui concerne la technique statistique appliquée a

1l'hydrologie ou étude du cycle de l'eau dans la nature.

Les exposés qui suivent ont été rédigés dans un cadre bien
défini qui est celui de la gestion des ressources en eau, au plan opéra-
tionnel. Cette projection dans l'avenir, donc dans 1'incertain, implique

nécessairement

- la prise en compte de la nature aléatoire du cycle hydromété-
orologique qui conditionne le renouvellement spatio-temporel

de la ressource en eau ;

- la schématisation des facteurs statiques (topographie,
géologie, pédologie, végétation, etc...) et dynamiques
(précipitation liquide et solide, rayonnement, température,
saturation en humidité de l'air, etc...), ainsi que celle des
processus compiexes d'évolution des systémes aquiféres en
réponse a ces impulsions d'origine atmosphérique, dans un

environnement.

L'optimisation de la gestion des ressources en eau, quelles que
soient les performances des algorithmes de calcul, n'a de sens que par
référence & un état donné de 1'information hydrologique : il faut donc
extraire le maximum de 1l'information contenue dans les échantillons de
mesures disponibles effectuées sur le terrain. S'appuyant sur des bases
physiques simples et éprouvées, l'analyse statistique des données obser-—

vées se révéle alors utile et pratique.
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Introduction

Comment définir la statistique moderne : un ensemble de méthodes

pour prendre des décisions raisonnables en présence d'incertitudes.

Cette définition est loin de celle qu'on attribuait a la statis-
tique au siécle dernier et antérieurement, car on considérait alors la sta-
tistique comme la science du dénombrement. Il s'agissait d'établir des
statistiques, une statistique étant un tableau de chiffres - relevé systé-

matique d'observations concernant un phénoméne quelconque : un "état".

Or, depuis le début du siecle, il y a une différence de conception
énorme entre cet aspect et la statistique mathématique utilisée comme méthode
d'investigation scientifique. Car, alors que cela n'avait pas été le cas
avant 1900, malgré la naissance et les développements du calcul des probabi-
lités, ce sont les théoriciens anglo-saxons, dont les chefs de file furent
K. PEARSON et FISHER, qui ont mis l'accent sur l'induction, c'est-&-dire : &
partir de résultats d'expérience, utiliser des modes de raisonnement permet-
tant de connaitre quelque chose de la structure interne des phénoménes. On
peut dire que l'hydrologie, c'est-a-dire la connaissance des phénoménes
d'écoulement, constitue le champ d'application idéal d'une telle méthode. Il
s'agit pour nous d'extraire des inférences valables des séries statistiques

de précipitations, de débits et de températures.

Quelle démarche suit-on lorsqu'on entreprend une étude statistique ?

I1 y a 3 phases principales

10—~ Tout d'abord description - consiste a effectuer une mise en ordre de
la série de chiffres considérés. Cette mise en ordre, ou classement, qui per-
met de réduire le tableau des données a un volume de chiffres beaucoup moins
important et plus maniable; on condense l'information fournie par ces données
& l'aide de quelques graphiques et valeurs types (moyenne, écart type, etc.),

techniques multidimensionnelles.



20~ I1 s'agit ensuite d'effectuer 1l'analyse de ces résultats. On s'effor-
ce de les habiller en leur appliquant un modéle probabiliste, c'est-a-dire
que l'on essaye de formaliser 1'information contenue dans la série par une
expression mathématique. Toute théorie ne s'ajustant pas aux faits doit étre

rejetée.

30~ La Prévision - on projette dans l'avenir le modele choisi pour pou-
voir organiser l'avenir de la fagon la plus avantageuse dans le contexte éco-

nomique considéré, faire des choix rationnels et ainsi guider la décision.

Aprés ces quelques généralités qui n'ont pas la prétention de défi-
nir et décrire exhaustivement tout ce en quoi consiste la statistique, mais
de donner un apergu, je vous propose le plan suivant pour la série d'exposés

qui constituent l'introduction & la statistique appliquée :

I/ - Les données : leur mise en forme (la statistique descriptive).
II/ - Les moddles probabilistes unidimensionnels

III/ - Application des modéles aux faits observés :
. échantillonnage
. estimation

. les tests
IV/ - L'ajustement d'une relation - les erreurs

V/ - Les liaisons stochastiques :
. la corrélation entre variables aléatoires
. l'autocorrélation : corrélation de variables dépendant du

temps (la mémoire ou persistance)

VI/ - Analyse factorielle :

. recherche des composantes principales spatiales et temporelles.

VII/- Analyse spectrale

Dans tout cela on ne peut se passer du calcul des probabilités car

la statistique en constitue l'application et le prolongement naturel. lLa




frontidre entre ces deux disciplines n'est pas facile & apprécier. Les théore-
mes asymptotiques sont trés importants (loi des grands nombres - théordme de

Bernouilli - théorime central limite).

Pour terminer cette introduction, je voudrais définir en quelques
mots dans quel esprit nous utilisons ces méthodes statistiques pour résoudre
les problémes hydrologiques qui se posent & E.d.F. et dans quel but. Il s'agit
d'extraire, des données dont on dispose, la meilleure information et la plus

compléte possible, dans un temps limité.

Toutes ces études ont en effet pour but une utilisation économique
des ressources en eau destinées essentiellement a la production d'énergie
électrique : le probléme des valeurs extrémes de crue étant également un pro-

bléme économique (relatif au génie civil) mais non prévisionnel.

Ainsi, 90 % de 1'information accessible par une méthode simple et
opérationnelle vaut mieux que 92 % ou méme 95 % par une technique apparemment

plus raffinée mais souvent hypothétique et surtout plus coliteuse.

Cette approche globale des phénomeénes fait ressortir l'ordre de
grandeur des influences : les termes négligés ont une influence notablement
inférieure & celle des termes retenus, résultats qui peuvent cependant orien-
ter des recherches ultérieures plus poussées vers une connaissance plus exacte

des faits.

La statistique mathématique ne peut en aucun cas suppléer au manque
ou & l'insuffisance des donndes d'observation : "on ne peut faire sortir un

lapin d'un chapeau"; ce n'est pas une magie.

Dans ce domaine moins qu'ailleurs, il n'y a pas de recettes mais une
approche intelligente des probléemes, il faut du bon sens, une certaine lar-
geur d'esprit pour suppléer aux lacunes des outils mathématiques. Il faut se

défier des solutions standards; le culte de la formule est nocif.

Enfin, comme toute science expérimentale ou méme <cience dite exacte,

la statistique n'est pas neutre : on peut soit induire un résultat en agissant



sur les hypothéses ou donndes initiales, soit suggérer une interprétation
des résultats, sans les tronquer, mais par une présentation appropriée et

par certaines omissiomns.

I1 est donc indispensable de bien définir les données (conditions
de leur acquisition et mesure), les transformations qu'on leur fait subir :
le choix des éléments significatifs d'une réalité et leur organisation selon

le champ des décisions & appliquer.
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I - LES DONNEES NUMERIQUES - MISE EN FORME

1.1 = Définition du hasard

Le hasard est défini, dans deux dictionnaires classiques, comme "la

cause fictive" des éveénements apparemment :

- inexplicables, souvent personnifiée (fortune, sort, destin),

- soumis a la seule loi des probabilités.

Les phénomeénes naturels observables tels que débits, précipitations,
températures de l'air, résultent d'une telle complexité de causes que les
grandeurs qui les mesurent en un point peuvent &tre considérées comme varia-
bles aléatoires (variables pouvant prendre un ensemble de valeurs, & chacune

desquelles est associée une probabilité).

La théorie des variables aléatoires et des distributions ou "théorie
de la probabilité", doit &tre considérée comme un ensemble de propositions
mathématiques établies pour former un modéle des régularités statistiques

observées en relation avec des suites de tirages au hasard.

Or, l'expression "au hasard" ne signifie pas n'importe comment :
ainsi les chiffres 5, 8, 2, 2, 7, 1, 3, sont-ils au hasard ? cela n'a pas de
sens. "Au hasard" n'a de sens scientifique que si l'on se référe au mécanisme
d'obtention de quelque chose et non au résultat : ce mécanisme est-il suscep-
tible d'une schématisation définie par une loi de probabilité (uni ou multi-

ﬁmambmmue)?

Le concept de hasard, tel qu'il est défini ici et dans la suite, est
lui-méme plus restrictif que le concept d'incertitude. Ceci est & l'origine de
deux grands courants chez les statisticiens, quant au contenu concret de la

théorie de la probabilité :

- pour les empiristes, dans tout phénomeéne au hasard on peut réaliser ou conce-
voir une suite 4'épreuves, et les fréquences constatées pour les réalisations
tendent vers des limites (loi des grands nombres); ainsi, la probabilité est

une limite de fréquence ;




- pour les intuitionnistes, les degrés de croyance rationnelle que 1l'on peut
avoir & 1l'égard de propositions incertaines se combinent entre eux d'une
fagon dont le calcul des probabilités rend compte, c'est la notion de

vraisemblance.

Disposant de l'ensemble des valeurs d'un phénomeéne : tirer au hasard
un échantillon de n valeurs parmi cette population signifie que chaque indivi-
du a méme chance d'é&tre choisi, et que tous les échantillons possibles d'effec-
tif "n" ont méme chance d'&tre sélectionnés. Pour réaliser cette opération,
indépendamment de toute influence humaine ou physique, on utilise les nombres
au hasard. Plus géndralement, cette branche des mathématiques expérimentales
englobe les méthodes de Monte-Carlo, appliquées aussi bien au domaine proba-

biliste que déterministe.

1.2 - Nombres au hasard

Les tables de nombres au hasard constituent de grands échantillons
dérivant de lois de probabilité particulierement simples. En effet, une suite
de chiffres au hasard est engendrée par un mécanisme probabiliste conduisant
4 1'obtention de chiffres successifs tels, qu'a chaque instant la probabilité
qu'un chiffre soit égal 2 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 est de une chance sur

dix.

Pour fabriquer ces tables de nombres au hasard, on a utilisé divers

procédés (& présent au musée) tels que :

- annuaires téléphoniques,

résultats de tirages de la Loterie Nationale,

tables de logarithmes (on a extrait les décimales de rang p & p+q),

etc.

Des procédés automatiques permettent de générer des nombres au hasard :

la méthode du carré médian, qui consiste & créer une séquence de nombres

en extrayant la partie centrale du nombre précédent élevé au carré, exemple :




M (a7) = 2209
N, = 20 (20)2 = 0400
U N, =40 e

Cette technique est maintenant abandonnée pour insuffisance.

- les méthodes de congruence, actuellement les plus utilisées parmi les

algorithmes de génération, de nombres pseudo-aléatoires, qui créent une sé-

quence de nombres d'apres la relation de récurrence suivante,

TS A K gt ey X ot ta X ta (modulo m),

le choix du parameétre m définit la longueur de la période de cette suite de

nombres, les valeurs de aj et m conditionnent la qualité du "hasard", ce choix

dépend aussi du type de calculateur.

Deux méthodes sont plus particuliérement programmées dans les biblio-

théques ordinateurs :

. la méthode congruentielle mixte X = a x, + ¢ (modulo m)

i-1
- la méthode congruentielle multiplicative x, Za x, (modulo m)

ol X est le reste de la division de a x, jparm, a étant une puissance de 5

par exemple et m une puissance élevée de 2; cette méthode a été testée comme

la plus performante (la période est de % si"a"differe de 3 du plus proche mul-

tiple de 8 et X est impair).

En fait, il est trés difficile d'imiter le hasard, bien que ces

tables de nombres au hasard soient soumises a une série de tests, exemples :

- la fréquence n, du chiffre i (0, 1, ..., 9) doit &tre peu9différen§e1ge2
n, -
1/10 sur l'ensemble des N chiffres; on teste la quantité I ( L )

i=0 N/10

qui suit une loi du (X2) & 9 degrés de liberté ;
~ test des paires, deux chiffres successifs doivent &tre indépendants ;

- test des lacunes qui est la fréquence des cas ou l'ona 0, 1, 2, ..., n

chiffres entre 2 chiffres identiques, etc.



Un biais important peut provenir de périodicités induites dans les
séries de chiffres au hasard; pour les détecter, on calcule les coefficients
d'autocorrélation. En fait, il y a souvent une période, mais 1'important est
qu'elle soit tres grande (tous les 500 000 chiffres ou plus). Pour les expé-
riences spatiales, la NASA a dfi construire des calculateurs spéciaux généra-
teurs de nombres au hasard, dans le but de simuler la fiabilité des appareil-

lages (les probabilités utiles étant trds petites).

Pour les usages courants, la méthode de congruence suffit.

1.3 - Utilisation des nombres au hasard

Si 1'on considiére la variable aléatoire X de fonction de répartition

F(X), la nouvelle variable Y = F(x) est uniformément répartie sur le segment
[0, 1]

Prob (Y < y) = Prob (F(X) < yl =y
on a réalisé ainsi une anamorphose rectangulaire.

4
A

- — e = =

Quelle que soit la variable aléatoire donnée, nous pouvons toujours

la ramener a une variable uniformément distribuée sur le segment [O, 1].



- e =3 = e

|
|
|
A

2
4 4, 0

Le dessin ci-dessus représente le tirage au hasard :

- d'une valeur de la variable aldatoire X définie par la loi de

probabilité F(X)

- d'une valeur de la variable aléatoire Z définie par la loi de

probabilité H(Z).

On "plonge" la loi de probabilité F ou H dans l'urne des nombres au
hasard, c'est une sorte de filtre, et l'on tire un nombre au hasard ¥, qui,

aprés transformation, fournit la valeur X, Ou z,.

En pratique, on remplace la distribution rectangulaire recherchée
par une loi discrete dont les sauts valent 10_k (k =3 ou 4); on associe des

ensembles de k chiffres extraits des tables de nombres au hasard.

Exemple -

La fonction de répartition des débits moyens annuels de la IOIRE & Blois
étant une loi normale de moyenne 360 et d'écart type 100, on veut générer
un échantillon de 10 valeurs de débits moyens annuels. On prendra, par

exemple, les 10 derniers nombres de 4 chiffres dans les 4 premiéres colonnes :

0347 1622
9774 8442
1676 6301
1256 3321
5559 5760

Si les sauts valent 10‘3, les valeurs des nombres au hasard sur l'intervalle

{0,1] seront :

y, = -034 yg = 162
¥, = .97 y, = 844
YB = 167 Vg = .630
Iy = 25 g = 332

Ve = .555 ¥, .= .576
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on cherchera dans la table de la fonction normale [F(u), u] les valeurs
centrées réduites de u (u = 9—:‘—E-Q-Q-) qui correspondent aux dix valeurs

100
P(u) = y; exemple yy = .977== F(u) = .977=> u = 2=>Q = 360 + 200 = 560

1.4 - Réflexion sur les procédds de simulation - intérét et limites

de cette technigue

Dans 1'exemple ci-dessus, il est évident que si 1l'on génere un
échantillon de milliers de valeurs de débits moyens annuels de la LOIRE a
Blois, la moyenne et 1'écart type de cette série fictive seront peu diffé- w
rents de 360 et 100, de méme la distribution empirique des valeurs classées

sera quasiment gaussienne.

I1 n'y a pas plus d'information dans 1'échantillon simulé que dans
1'échantillon des 100 valeurs observées : cette information est simplement
présentée avec un fort grossissement. Les conclusions tirées de 1'échantillon
fictif ne sont légitimes qu'a condition que 1'on puisse, théoriquement, extrai-

re les mémes de la série réelle.

Cependant une telle simulation apporte une information sur les sé-
quences des débits : en particulier cela permet d'étudier comment se compor-
terait un réservoir d'accumulation annuelle face & une série de 4 ou 5 ans

d'apports annuels déficitaires, par exemple.

Dans un cas aussi simple, on peut se poser les questions suivantes :

- la fonction de répartition ajustée & 1'échantillon de valeurs annuelles repré-

sente-t-elle correctement les valeurs de faibles probabilités ?

- 1'échantillon est-il suffisant pour estimer avec une bonne confiance les pa-

rametres de cette fonction ?
~ existe-t-il ou non une dépendance entre années successives (mémoire courte) ?

- existe-t-il ou non des accumulations de valeurs fortes ou faibles (mémoire

longue) ?

- y a=t-il stationnarité ou non du phénomeéne dans le temps (influence de

Thmm@ ?
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On peut d'ailleurs s'appuyer sur un phénomeéne directeur dont on
connait mieux la fonction de répartition (longue période d'observation) et
la liaison avec le phénoméne que l'on cherche & simuler, comme c'est le cas

dans la relation pluie-débit.

Les techniques de simulation apportent toute leur utilité lorsque
les phénoménes sont complexes, c'est le cas lorsqu'on cherche a créer artifi-
ciellement des débits-pluies-températures, hebdomadaires-journaliéres-—
horaires, ponctuellement et régionalement, car l'on doit assurer 1'homogéndi-
té et la cohérence des donnédes simulées par référence aux observations réel-
les, non seulement dans le temps mais aussi dans l'espace. Ce qu'il est alors
impossible de calculer analytiquement, lois de probabilité conditionnelles
(spatio—temporelles) compliquées et non stationnaires, devient relativement

aisé par la méthode de Monte-Carlo.

En résumé, la génération & l'aide de nombres au hasard permet :

- d'étudier les propriétés statistiques (dispersion, distribution) de para-

metres de lois de probabilité complexes ;

- de simuler des séries de données hydrologiques donnant le moyen de

caractériser les structures d'équipement, déterminer le dimension-
nement optimal des ouvrages de protection et de régulation des eaux

(d'apres les caractéristiques du régime d'écoulement) ,

. contréler les ressources en eau sur un bassin, en particulier de
tester les régles d'exploitation d'un réservoir ou d'un systéme de réser-
voirs (en tenant compte éventuellement des prévisions calculdes) face &
1l'occurrence d'événements extrémes ou a la conjonction d'événement parti-
culiers dans le temps et 1l'espace, avec différentes hypotheses économiques.
La simulation de plusieurs milliers de données permet de lisser les résul-
tats que 1'on aurait obtenus avec de courtes séries d'observations. Cette

technique est ainsi trés utilisée en recherche opérationnelle.
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1.5 - Distribution empirigue

La série des débits moyens annuels de la LOIRE & Blois forme une
suite d'observations qui peuvent &tre considérées comme des tirages dans

1'urne des modules de la IOIRE : F(Q).

Implicitement on admet que l'une est stable - il n'y a pas d'évo-
lution de climat (& 1'échelle séculaire) - et formée d'une population infi-

nie de débits annuels.

On classe les n valeurs de débit observé dans 1l'ordre croissant,

par exemple : i =1, 2, ... n.

On peut considérer les n valeurs comme n points sur un axe. La

distribution de 1'échantillon sera définie en affectant une masse de % 3

chaque point.

C'est une fonction en escalier. F (xi) = E pourcentage des valeurs

Dans la pratique, on affecte 2L =1 5 1'observation de rang i qui
n
est le centre de la marche de hauteur %. L'avantage de cette représentation

est qu'il permet un lissage de la représentation en "escalier".

En fait il existe plusieurs modes de représentation découlant de la

formule générale :

- a
n+bd
avec a = 0 ; b=20
a = H b =1 (Gumbel)
a=.5 ) b=20
a = .375 ;s b =.25 (Gauss)
a = .44 H b= .12 (Gringorten pour les valeurs extrémes)
a=-.38 H b =-.31 (Chegodaxev - valeurs extrémes)
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Ces formules étant plus ou moins justifiées par des considérations
théoriques, lorsque n est de l'ordre de quelques dizaines elles sont trés

voisines. Pour notre part nous avons choisi la représentation a = .5 ; b = O.

Avec 30 ou 50 valeurs il est peu réaliste de tracer un histogramme
de fréquence (on aurait des classes d'effectif 0, 1, 2, 3), le choix de 1'am-
plitude de classesest arbitraire ainsi que celui de l'origine de celles-ci;
en hydrologie on utilise généralement les fréquences cumulées (exemple de la
LOIRE & Blois), excepté dans le cas des précipitations journalidres pour les-
quelles on dispose d'un grand nombre d'observations indépendantes, 1000 &

4000.

Exercice : Construire la distribution empirique du débit moyen annuel de la

IOIRE & Blois de 1863 & 1887.

On passe intuitivement & la notion de courbe de fréquence, dans le
cas présent de fonction de répartition, en imaginant des intervalles de clas-

ses de plus en plus étroits, n augmentant.
Le théoréeme de Bernouilli est le pont entre fréquence et probabilité.
Fx(x) est 1l'image statistique de F(x); € et 3 étant aussi petits que 1l'on veut,

il y a une probabilité d pour que: Prob{ l Fx(x) - 7(x) !>e} <d

Exemple de la LOIRE a Blois : série de 100 ans.

1.6 - Synthése des distributions statistiques

On cherche & résumer et réduire par un, deux, trois paramétres sim-

ples 1l'information contenue dans les n valeurs de 1l'échantillon (xq, Xy ...Xn).

On utilise habituellement pour caractériser :

- la tendance centrale

x; —> moment d'ordre 1,

a g e

. la moyenne arithmétique simple X =

a2 i=1
E(x) = J/r X f(x) dx

a

0o
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. s = _Z AN X
. la moyenne arithmétique ponderée x = __E___L , Ai étant le poids
A,
affecté & x, 1
, B
. la moyenne géométrique g : log g = - Z log X ;
i=1
11 2o
. la moyenne harmonique h : === 2 =
h n i=1 X5
. 1
. la moyenne quadratique q : q = s z xiz

. le mode Xy valeur pour laquelle la fréquence est maximale
o

. la médiane xz_.. telle que F* (x50)< 50 %

50
- la dispersion ou variabilité du phénomene 5 ‘
n 1
. 1a variance s° = % T (xi -x)2=>7(x) =/ z2 f(x) d&x -
i=1
@l

@2 2
//’ x f(x) dx ou l'écart type s
&

: X . - X
. une différence de quantiles 99 __ 10
2

Rappelons que le quantile xp de la fonction de répartition F(x)
est défini par F(xp) =P %

Nous n'utilisons guére les moments centrés d'ordre supérieur a 2 car
le poids des valeurs extrémes devient alors prépondérant surtout dans le cas

de petits échantillons.

Ces moments servent & calculer :

{3[%-a1y

- le coefficient de dissymétrie : ﬁ1 =|1

H

qui s'annule lorsqu'il y a symétrie; on peut également utiliser le rap-
Xom = X
port des quantiles : 29 20 qui est :
*50 = *10
. > 1 si la dissymétrie est positive

ou \ﬁé;

1 8'il y a symétrie

A

1 si la dissymétrie est négative
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n
2 (z, -0
- le coefficient d'aplatissement :[32 = i=1 -

{ 3 [(Xi - 35)2]}2

N

i=1
qui est égal & O dans le cas d'une distribution normale.

Pour les débits on utilise parfois :
90
Log 29 comme parametre de dispersion
%10
X9o - %
Log =22 10 comme paramdtre de dissymétrie.
X
50

Le coefficient de variation ¢, = est indépendant des unités et

M 10

permet de comparer deux distributions, exemple :

i
&Y
e)

. pour les débits moyens annuels de la LOIRE : c

. pour les débits moyens du 25 octobre de la LOIRE : c, = 1.43

. pour les débits moyens d'octobre de la LOIRE Poe = .9
%90 ~ *10
on pourra aussi utiliser : 20 ___10
g9 + X

A 1'aide des distributions empiriques et sans faire d'hypothése ma-

thématique, on peut déja disposer d'une information fort utile.

Les exemples de la répartition des débits moyens journaliers pour
la IOIRE & Blois - la ROMANCHE au Chambon - le DRAC au Sautet, 1l'illustrent

bien.

Sans parler de 1l'intérét hydrologique qui permet de caractériser de
facon simple trois régimes différents : pluvial - nival - pluvio-nival, ces
renseignements peuvent &tre fort utiles, par exemple, & un Service d'Exploi-
tation qui projette d'effectuer des travaux en riviére un an & l'avance, donc
sans possibilité d'utiliser de prévision. I1 est possible de choisir la pério-
de durant laquelle les débits ont une certaine fréquence d'étre ou de ne pas

8tre dépassés.
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1.7 - Le contrdle et la critique des données

C'est la partie ingrate et la phase préliminaire de toute étude sta-
tistique. On peut affirmer sans exagération que 30 & 50 % du travail consiste

4 critiquer les séries de données que l'on utilisera dans le calcul.

On n'insistera jamais assez sur cet aspect, car ce n'est pas un tra-
vail "noble"; de plus, la compilation de chiffres est rebutante, fastidieuse.
I1 n'y a pourtant pas de meilleur moyen d'acquérir la notion des ordres de

grandeur. De ce contrdle dépend toute la suite de 1'étude.

Types d'erreurs fréquentes :

- erreurs aldatoires : erreurs de mesure, erreurs de transcription de

données,

- erreurs systématiques : changement d'appareil ou de station & partir d'une
date.

On détecte ces erreurs, soit en étudiant la continuité des mesures,

soit par comparaison avec des stations voisines.
Dans ce dernier cas on utilisera le contr8le par corrélation.

Une méthode rapide, si 1'on dispose d'une bonne série de référence
et d'une série dont on veut tester 1'homogénéité, consiste a tracer la ligne
des valeurs cumulées : % x, en fonction de % Vis 8'il v a une hétérogénéité
systématique on constate une cassure trés nette i

3
tzy. - -

e

yd
- T Al

°

Nous reviendrons sur ce contrdle lors du cours sur la corrélation.
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1.8 — Graphiques 3 échelles fonctionnelles

Soit x une variable aléatoire et F(x) sa fonction de répartition,
la représentation graphique %, F(x)] en coordonnées naturelles est générale-

ment une courbe en S continue.

On a construit des graphiques pour les fonctions les plus courantes :
normale, log normale, doublement exponentielle (Gumbel), tels que la représen-

tation [x, F(x)] soit lindaire.

Quand on étudie la distribution empirique des n valeurs d'un échan-
tillon, on peut ainsi s'assurer visuellement que la fonction choisie pour re-
présenter cet échantillon, convient ou non, et éventuellement 1l'ajuster (i1
suffit de 2 points) et estimer ainsi graphiquement les paramétres de cette

fonction de répartition.

<5
Le "papier" gausso-arithmétique se présente ainsi : 474(
2
u
en ordonnée, l'échelle est arithmétique 4
en variable normale centrée réduite et, o 1.
en abscisse, 1'échelle est arithmétique 4 _
(exemple de la LOIRE). s ;

m  mir X
Le papier gausso-logarithme a la méme échelle des ordonnées, et

1'échelle des abscisses a une graduation logarithmique.
Cette présentation dilate la zone centrale (entre 10 % et 90 %).

Le "papier" Gumbel se présente ainsi : en abscisse 1'échelle est
arithmétique en -L [—L F(x)] , en ordonnée 1l'échelle est arithmétique.
_e—(a’x +B)
Sur le graphique, la fonction F(x) =e est une droite
(toute fonction en exponentielle simple a une représentation linéaire dans

la zone des fortes probabilités).

Cette représentation a pour avantage de dilater 1'échelle dans les

fortes probabilités, on peut noter que pour F(x) voisin de 1
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'
X
-L [-L F(X)]ciLT avec T = ——
1-F
(exemple des précipitations jour-
nalidres & Orcidre)
[¢]
o] [¢]
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TABLEAUX ET FIGURES DU CHAPITRE I (Pour travaux dirigés)
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TABLE 2-1

FONCTION DE REPARTITION DE LA LOI NORMALE REDUITE
(Probabilité de trouver une valeur inférieure i u)

u 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09

0, 5000 | 0, 5040 | 0, 5080 |0,5120| 0,5160 |0,5199 | 0,5239 |0,5279 | 0,5319 | 0, 5359
0,5398 | 0,5438 | 0,5478 | 0,5517{ 0, 5557 [ 0,5596 { 0,5636 |0,5675 |0,5714 | 0,5753
0,5793 | 0,5832| 0,5871 | 0,5910( 0, 5948 | 0,5987 | 0,6026 | 0,6064 | 0,6103 | 0,6141
0,6179|0,6217| 0,6255 |0,6293| 0,6331 |0,6368 | 0,6406 [ 0,6443 | 0,6480 | 0,6517
0,6554 | 0,6591 | 0,6628 {0,6664| 0,6700 |0,6736 | 0,6772 [0,6808 | 0,6844 | 0,6879
0,6915| 0,6950 | 0,69885 | 0,7019| 0,7054 |0,7088 | 0,7123 |0,7157 |0,7190 | 0, 7224
0,7257 | 0,7290 | 0, 7324 |0, 7357 0,7389 |0,7422 | 0,7454 | 0,7486 | 0,7517| 0, 7549
0,7580 | 0,7611} 0, 7642 {0,7673| 0,7704 {0,7734 | 0,7764 {0,7794 | 0, 7823 ] 0, 7852
0,7881 | 0,7910( 0,7939 |0, 7967 0,7995 | 0,8023 | 0,8051 |0,8078 | 0,8106 | 0,8133
0,8159 ) 0,8186 | 0,8212 |0, 8238 0,8264 | 0,8289 | 0,8315 |0,8340 | 0,8365| 0, 8389

0,8413 | 0,8438| 0,8461 | 0,8485| 0,8508 | 0,8531 | 0,8554 [0,8577 | 0,8599 | 0,8621
0,8643 | 0,8665| 0,8686 | 0,8708| 0,8729 |0,8749 | 0,8770 | 0, 8790 | 0, 8810 | 0, 8830
0,8849 | 0,8869 | 0,8888 | 0,8907| 0,8925 |0,8944 | 0,8962 | 0,8980 | 0,8997 | 0,9015
0,9032 | 0,9049 | 0,9066 | 0,9082| 0,9099 |0,9115)0,9131 (0,9147 |0,8162 | 0,9177
0,9192 | 0,9207| 0,9222 | 0,9236|°0,9251 | 0,9265 | 0,9279 |0,9292 | 0,9306 | 0,9319
0,9332 | 0,9345| 0,9357 | 0,9370| 0,9382 | 0,9394 | 0,9406 | 0,9418 | 0,9429 | 0, 9441
0,9452 | 0,9463 | 0,9474 | 0,9484 | 0,9485 | 0,9505 | 0,9515 | 0,9525 | 0,9535| 0,9545
0,9554 | 0,8564 | 0,9573 | 0,9582| 0,9591 | 0,9599 | 0,9608 |0,9616 | 0,9625| 0,9633
0,9641 ) 0,9648 | 0,9656 | 0,9664 | 0,9671 | 0,9678 | 0,9686 [ 0,9693 |{0,9699 | 0,9706
0,9713|0,9719 | 0,9726 | 0,9732| 0,9738 [ 0,9744 { 0,9750 | 0,9756 [ 0,9761 | 0,9767

0,9772}0,9779 | 0,9783 | 0,9788| 0,9793 |{0,9798 | 0,9803 |0,9808 [ 0,9812| 0,9817
0,9821 | 0,9826 | 0,9830 | 0,9834| 0,9838 [ 0,9842 | 0,9846 |0,9850 | 0,9854 | 0,9857
0,9861 | 0,9864 | 0,9868 { 0,9871) 0,9875 |0,9878 | 0,9881 |0,9884 | 0,9887| 0,9890
0,9893 | 0,9896 | 0,9898 | 0,9901| 0,9904 | 0,9906 | 0,9909 |0,9a11 |0,9913| 0,9916
0,9918 | 0,9920 | 0,9922 ! 0,9925| 0,9927 |0,9929 | 0,9931 [0,9932 | 0,9934 | 0,9936
0,9938 | 0,9940 | 0,9941 | 0,9943) 0,9945 | 0,9946 | 0,9948 |0,9949 | 0,9951 | 0,9952
0,8953 | 0,9955 | 0,9956 | 0,9957| 0,9959 {0,9960 | 0,9961 |0,9962 | 0,9963 | 0,9964
0,9965 | 0,9966 | 0,9967 | 0,9968| 0,9969 | 0,9970 ( 0,9971 |0,9972 | 0,9973 | 0,9974
0,9974 | 0,9975| 0,9976 | 0,8977| 0,9977 | 0,9978 | 0,9979 |0,9979 | 0,9980 | 0,9881
0,8981 | 0,9982 | 0,9982 | 0,9983| 0,9984 | 0,9984 | 0,9985 |0,9985 | 0,9986 | 0,0986

W - O

O?OOOOOOOO
@ -2 D

L e e
©OTARNPEWN~-O ©OCOTIRNE WM ~O ©

NI NN NN e e e

Table pour les grandes valeurs de u

u 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,8 4,0 4,5

F(u) | 0,99865| 0,99904| 0,99931| 0,88952| 0, 99966 | 0,98976 | 0,099841 | 0,999928| 0,099868 | 0, 999907

Nota -- La table donne les valeurs de F(u)pour u positif. Lorsque u est négatifil faut prendre
le complément 2 1'unité de la valeur lue dans la table,

Exemple . pour u = 1,37 F(u) = 0,9147
_pour u =-1,37 F(u) = 0,0853

Rovue do Statistique Apsliguéo — 1959 — Vol. Vil - N°® 4 ' = 7



Précipitations journalidres du mois de NOVEMBRE (1931 - 1967)

I-22

MOYENNE

NO LIM,SUP
1 .00
2 1.00
3 2.00
[ " 3,00
5 4,00
6 5,00
7 6.00
8 7.00
9 8,00
10 9.092
11 10.00
12 11,00
13 12.60
14 13,00
i5 14,00
16 15,00
17 16.00
18 17.00
19 18,00
20 19,00
21 20,00
22 21,00
23 22.00
24 23,00
25 24,00
26 25,00
27 26,00
28 27.00
29 28,00
30 29,00
31 30,00
32 31,00
33 32,00
35 34,00
36 35.00
37 36,00
38 37.00
40 39,00
41 40,00
ks 44,00
46 - 45,00
47 46,00
43 47.00
49 48,00
S0 49,00
52 51,00
53 52,00
54 53,00
56 55,00
57 56.00
58 57.00
59 58.00
62 61,00
63 62,00

65 64,00

5,713

N

bt et bt Bet e bt i NI U B0 NI R N 1t 1t 1t S = M E = N WO O VUNOERONONUWNON G - OO~

ECART TYPE 11,501
FREQUENCE F,CUMULEE
65.95 65.95
5,05 70,99
2.61 73.60
2,25 75.86
2.34 78.20
1.71 79.91
«90 80,81
1.35 82,16
135 83,51
«99 84,50
1.53 86.04
«90 86,94
063 87,57
54 83.11
.09 88,20
54 88,74
063 89,37
54 89.91
027 90,18
027 90,45
e63 91,08
o5k 91.62
o 45 92,07
54 92.61
«36 92,97
54 93,51
.18 93.69
«27 93,96 IRNIHS
.145 9"0.‘*1 e 8 o e s
o5k 94795 Caono
54 95,50 -
027 95,77
«18 95,95
09 96.04 2222Z
36 96,40 LA B Y
027 96,67
45 97.12
«09 97,21
«36 97.57
.03 . 97,66 T~
.09 97.75
«09 97.84
.18 98,02 ocoococo
.18 98.20 ©eecao
el1l8 98.38 W N o
«09 98,47 Cm®I
027 98,74
.18 98092 O N =MD
.09 99,01 wwnn~r~
«09 99,10
.09 99.19
+09 99,28
.09 99,37
.09 99,46
«09 99.55
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IT - LES MODELES PROBABILISTES

I1 existe en hydrologie un arsenal fort important de fonctions de
répartition. J'évite & dessein 1'expression loi de probabilité qui suggdre
implicitement une justification physique et peut faire croire que les consi-
dérations théoriques imposent le choix d'un modéle spécifique pour représen-

ter tel phénomene hydrométéorologique (pluie, débit, température).

Dans la pratique, la seule justification & 1l'emploi d'une fonction
de répartition est en général purement empirique : on constate la cohérence

des résultats dans un grand nombre d'applications comparables.

Parfois plusieurs fonctions de répartition peuvent &tre pratique-
ment confondues dans un domaine de l'intervalle B),ﬂ , pour caractériser un
phénoméne; si 1l'on ne dispose pas d'éléments complémentaires permettant de
décider du choix, la regle générale consiste & utiliser la fonction la plus
simple qui contient le moins de parametres. La justification sera donnée

lors du 3eme exposé.

Ces propos n'ont pas pour but de diminuer 1l'intérét des modeéles

probabilistes mais de présenter honnétement la réalité.

Certains pratiquent le lissage des distributions empiriques, sur
graphique xi,[éiﬁi_liet estiment que cela suffit pour déterminer la proba-
bilité 4'un évenement, évitant ainsi de s'encombrer d'hypotheses mathémati-
ques qu'il est impossible de vérifier avec certitude. Cette procédure est
sans doute acceptable et sans grand risque entre les quantiles 20 % et 80 %

pour des échantillons de 30 & 50 observations.

A-l'extérieur de cet intervalle cela devient dangereux, on s'ex-
pose & de graves mécomptes en étant trop tributaires des aldas de 1'échan-
tillonnage et de certaines valeurs extrémes. De plus ce type de lissage est
trop subjectif, deux personnes effectueront rarement un ajustement graphique
identique sur le méme échantillon - des expériences de ce genre, faites sur
un grand nombre de cas, montrent la grande variabilité des résultats. Aussi,

bien que cette méthode paraisse inoffensive, on ne peut la déconseiller.

e
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En fait, la réalité est moins défavorable, et il existe heureuse-

ment une continuité temporelle et spatiale des phénomenes hydrométéorologi-

ques, continuité qui a permis de mettre & 1'épreuve les fonctions de répar-

tition traitées dans ce chapitre.

2.1 - La fonction gamma incompléte

variance

1
T(n) ©

A1
) % définie entre 0 et oo

I

f(X) =

(

X
p

/w f(x) dx =1

0

p : est le parametre d'échelle

A : est le parametre de forme

Pour faciliter les calculs on posera : y =

IN

-y A=1

f(Y)=-F%-}\7e v

Rappelons que I (A) =/ f(y) dy = (A1) !
0

Les moments se calculent simplement :

od

espérance mathématique E(y) = y f(y) dy = A

0

o
v(y) =/ y2 £(y) dy - A2 = A (M1) = A2 = A
0

moment centré d'ordre 3 : M3<y) = E(y’) - 3 E(y2) E(y) + 2{?(yﬂz =2 A

le moment centré d'ordre 4 :

u(7) = 5GY) - 4 8G°) 8(y) + 6 80r?) BGI - 3EGY =5 te2) A
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En x on obtient

m=E(X) =)\p
02=V(X) =\ p?
ug(x) =2 p

5 a (h+2) pt

u, (%)

On détermine aisément les relations suivantes :

Cette fonction est entiérement définie & 1l'aide de la moyenne et

de la variance. Selon les valeurs du parametre de forme (O-< AN @ )

f(x)

0K A<t on obtient.une courbe en J

avec branche infinie & l'origine

® O

. A =1 on obtient la fonction f(x)

exponentielle

v

o
o

. A>1 définit les fonctions & allure £(x)

en cloche. Leur dissymétrie sera

v

d'autant plus importante que A est

o
ol

faible (quelques unités) pour A = 25
la dissymétrie est déja trés atténuée et pour A > 60 on obtient une
courbe pratiquement symétrique et approximable par la fonction gaus-

sienne.
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Remargue : on peut établir la fonction I' incompléte pour les valeurs entiéres

de A & partir d'une somme de variables aldatoires dont la fonction de répar-

tition est exponentielle.

On considérera des variables réduites :

u de fonction f(u)

]
®

v de fonction g(v)

1]
®

La densité de probabilité du couple de ces 2 variates (contraction

de variable aldatoire) indépendantes s'écrit : N
v

u

a (u,v) = e e’ dudv

posons ¥ = u + v et calculons 1l'intégrale sur u

vV=y-u
usy >
eV 4qu dy u
u=0
soit : eV yay

Pour 3 variates u+ v + w =y + w on utilisera le méme processus;
de proche en proche on trouve la densité de répartition de la somme de k

variates exponentielles :

1 -y k-1

G-y ° 7

Cette fonction a été tabulée par Karl Pearson.

Remargue : la fonction de répartition gamma incompléte appliquée au logari-
thme de la variate x, est recommandée aux Etats-Unis pour représenter la
distribution des valeurs extrémes de débits de crue.

En fait cela revient & un moyen terme entre la fonction de Gumbel
et les fonctions de Fréchet et log normale. Ce genre de compromis ne repose

sur aucune Jjustification.
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2.2 - Fonction de répartition normale ou gaussienne

On l'appelle parfois abusivement la "loi" du hasard.

A ce propos, il est instructif de citer l'anecdote suivante : tout
le monde croit a la "loi" normale des erreurs, les expérimentateurs parce

qu'ils pensent qu'elle peut &tre prouvée par les mathématiciens, et les mathé-

maticiens parce qu'ils croient qu'elle a été établie par l'observation. Les

deux théses étant d'ailleurs correctes dans la mesure ou on ne leur accorde

;
pas la valeur d'un postulat. )

-1 (2=m)® i

1 2 o \
f(x) = e & ] \\ ] >
c\Vanm A ~m %o X

Flxo) |-

Elle est définie pour z variant 5 !

!

entre -2 et + oo, ‘ _——”/,////A !
° ! >
o X X

Comment caractériser physiquement cette fonction :

la valeur x de la variable résulte de l'action d'un grand nombre de facteurs
dont les effets sont additifs - dont les fluctuations sont indépendantes,
distribudes suivant des lois de probabilité quelconques mais dont les pre-
miers moments existent - les fluctuations sont du méme ordre de grandeur -
la fluctuation d'un facteur particulier est petite par rapport & la fluctua-

tion totale due a 1l'ensemble des facteurs.

Cette fonction est extrémement utile et a des propriétés importan-

tes, mais on lui a trop souvent attribué une valeur quasi métaphysique.

Ses moments

E(x)

7(x) = o2

]
8

les moments d'ordre impair sont nuls, du fait de la symétrie; les moments

d'ordre pair s'obtiennent & partir de la relation :

- - 2
g = (m-1) o Mp-2
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que l'on établit simplement 3 1'aide de la relation différentielle :

y2 Zz

2
d [ym_1 e 2 }: (m=1) ym—2 e 2 iy -7 e 2 dy

on peut obtenir 1l'expression de la loi normale par addition de variates uni-

formes.

2.3 - La fonction de répartition log normale (Galton-Gibrat)

-1 (ozx - M)2

NP _ 1 2 S

La densiteé : f(x) = e €
S 27

ce n'est autre que la fonction normale appliquée au logarithme de x.

C'est la "loi" dite de l'effet proportionnel : la variable x est
la résultante d'effets multiplicatifs en valeurs naturelles. Ces effets de-
viennent additifs en logarithme, on retombe ainsi sur le cas de la fonction

normale.

Les parametres :

M est le logarithme de la moyenne gdométrique des observations,

32 est la variance des logarithues des observations.

Relations qui existent entre la moyenne, la variance de x et la

moyenne et variance de log x :

posons y = a 1oge X + b; y étant une variable log normale centrée réduite

a log x+b _ ¥°
1 e 2
P(x) = / e dy

- g

+ 00 -

s x(y) e dy




-b
(£=0)
% = I=b,
or x =e ou exp (537)
+o _ Y
d'ou m = 1 ,/// e 2
% Y 2n -
1 _b
1 2a? -a
m = e
X
\[271: - o
J__b
2a? " g
m = e =m
X 1

a

dy

de méme les moments d'ordre k s'obtiennent & l'aide de :

+ ® . -2

1 -

= —x (y) e ?
Tk [w V2r 7

soit aprés transformation

k2 _kb
m, = e2a2 a
2 -2k
aZz a
en particulier m, = &
2 -2
a? a
2 _ - m?2 =
02 = m, m1 e
1 _2b
a® a
=e

M étant la moyenne des logarithmes :

dy

1 _2b

22 "~ a

2

2

z _1)
M=

si on note g la moyenne géométrique;

II-7

(1)
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S  étant 1'écart type de logarithme, en remplagant a et b par leur valeur

en fonction de M et S on a :

a =L
- s
b= - M lOge g
=-35= S
D'apres (1) log m_ = §2+ lo | (3)
P gex"z geg
2 2
D'apres (2) log o =log g + S log (es -1) (4)
e e 2 e
c
Rappelons que le coefficient de variation de x : Cv = Eﬁ
X

1
a2
log, (2" - 1)

oY
o
o
|
o
]
®
Q
<
1]
[NS] R

loge ox- logemX =

o
o
o
(@]
i
H
o
O]
[0)
~~
—
+
«Q
<n
~

2.4 - Application de la fonction de répartition normale & des variables

transformées - Mélange de lois normales

D'une fagon générale on peut toujours appliquer la fonction de
répartition gaussienne & des transformées de la variate initiale x, soit
y = o (x), y étant une fonction monotone de x. C'est le cas pour y = )
a loge X + b; un autre exemple d'application consiste & effectuer y = adt

avec m > 1, généralement m = 2 ou 3.
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I1 est évident que 1l'on dispose ainsi d'un large éventail de fonc-
tions de répartition, mais il faut se garder d'abuser de cette trop grande
souplesse d'adaptation aux distributions empiriques d'observations, sans

autre justification.

On dispose 4galement d'un autre procédé pour reproduire une gamme
de fonctions de répartition trés varide, en mélangeant deux fonctions nor-

males.

Soit la fonction de répartition normale H(x) de moyenne m, écart

type Oys et la fonction de répartition G(x) de moyenne m, et d'écart type 02,

le mélange de ces 2 fonctions est une fonction de répartition de la forme :

F(X) =D H(x) + q G(X) avec p+q = 1
petaq >0
Cette fonction dépend de 5 paramétres p, my, Oy My % qu'il faudra calcu-

ler d'aprés les moments de P(x).

Cette représentation a été proposée pour représenter la distribu-
tion des débits d'une rividre, en considérant que H(x) représente la fonc-
tion de répartition des débits "ordinaires" et G(x) la fonction de réparti-
tion des débits extrémes supérieurs (crues), la proportion p étant au moins

égale a .9 .
Ce moddle n'est pratiquement pas utilisé en hydrologie actuellement.

On peut d'ailleurs imaginer de mélanger K fonctions de répartitions
normales :
K

P, Hi(x) aveciz1 p, = 1

I, PN

F(X) =
i=1

modéle défini par 3K-1 parametres (mi, Sy pi).

On voit que le nombre de paramétres & calculer devient vite impo-

sant, eu égard au nombre d'observations; bien que la souplesse d'adaptation
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d'une telle fonction de répartition puisse &tre séduisante, on ne peut que

déconseiller son utilisation pratique.

Remarques

- I1 y a parfois confusion entre la fonction de répartition d'une
variate résultant du mélange de deux fonctions de répartition normales
(ef. ci—dessus), et, la fonction de répartition de la somme de 2 variates

gaussiemes de parameétres m, o, et m2, 02. Dans ce dernier cas il s'agit

1
d'une fonction de répartition gaussienne de moyenne m = my + o, et d'écart
type o = |/0f + 03, moments tout 3 fait différents de ceux de F(x) =

p B(x) + (1 - p) a(x) .

- Ainsi, sans recourir & des fonctions de répartition sophistiquées
dont 1'expression analytique est mathématiquement complexe, par le seul
jeu de simples transformations de variables ou mélange de 2 fonctions de
répartition, avec la fonction gaussienne on peut obtenir une panoplie

varide et trés large des modéles probabilistes.

2.5 — Fonction de répartition harmonigue (loi de Halphen)

I1 s'agit d'un cas particulier des lois de Halphen du type A

_a X u
2 U * X) v 1
f(x) 1 X

]
®

pour v = 0 on obtient la fonction harmonique :

f(x) L

1]
N
M
-
o
<
®

ko est la fonction de Bessel Basset d'ordre zéro.
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Pour la caractériser, il suffit de deux paramétres : un paramétre
d'échelle : u= \/mh qui est aussi la médiane de la distribution (h est la

moyenne harmonique : % = % P % ) et d'un parametre de forme soit CV = 9,

5 m
soit A =\/;:.

A 1'aide de l'abaque ci-joint, on peut construire la fonction de
répartition f(x) dx; elle est définie par une droite passant par 1l'ori-
gine et le pognt correspondant au CV sur l'axe de gauche. Cette droite cou~
pe des courbes verticales qui définissent la probabilité et des droites hori-
zontales qui définissent la valeur réduite correspondant & la probabilité;

on multiplie cette derniére par u pour obtenir la valeur naturelle.

Cette fonction peut rendre des services pour des débits dont la

distribution est dissymétrique; on l'a appliquée sur V&?plutét que sur Xx.

Je m'étendrai peu sur ces fonctions, il existe également les lois

-2 a1 . .
X 2 , qui dépendent de trois para-

du type B : f(x) = k exp [— §2+ b §
metres et peuvent faire illusion par leur mathématique complexe. Il s'agit
la d'un outil beaucoup trop raffiné pour &tre utilisé en hydrologie & 1'heure
actuelle. Et il ne faudrait pas croire que la complexité mathématique aug-

mente la précision des calculs.

2.6 - Fonction de répartition de Gumbel

-
F(X) =e

N
[\
i

ah$]
Q

S
I
B
!
¢
W

avec
% ('K ou nombre d'Euler ﬁ7.577)

C'est la "loi" dite des valeurs extrémes; on retrouve, la encore,
le méme abus d'usage que pour la fonction normale, on attribue & cette fonc-
tion des propriétés qu'elle ne satisfait qu‘avec une approximation plus ou

moins étroite.
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Soit un échantillon de n valeurs indépendantes, la fonction de ré-
partition associée & 1'échantillon G(x), la loi de probabilité de la plus

forte de ces n valeurs s'éerit :

G(x)n

Nombreux sont ceux qui sont persuadés que G(X)n'= F(X). Cette
égalité n'est rigoureuse que si G(x) est une expression en exponentielle

simple; dans tous les autres cas il ne s'agit que d'une approximation.

En effectuant une transformation logarithmique sur x (y = loge X),
la nouvelle variate"f'ayant pour fonction de répartition la fonction de

Gumbel, on obtient pour x la fonction de répartition de Fréchet.

Ce type de transformation a été utilisé précédemment pour les fonc-
tions de répartition de Galton-Gibrat et log Pearson III. Cette fonction,
utilisée parfois dans 1'étude des valeurs extrémes de débits, conduit & des

valeurs considérables lorsqu'on l'extrapole au-dela de la probabilité .99 .

2.7 - Fonction de répartition tronquée — censurée

Soit une fonction de répartition F(x), de densité f(x), si on
effectue une troncature a la valeur Xo’ en ne s'intéressant qu'aux valeurs

supérieures a X s cela revient & créer une nouvelle fonction de répartition

f(x)

o) = el ilg) !

pour X > X

F'(x.) .
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Si on effectue une coupure au point X, sur une fonction de répar-
tition initiale F(x), cela revient & accumuler en x, toutes les valeurs qui

lui sont inférieures (0< x < xo).

Prenons comme exemple la fonction de répartition exponentielle :

X

-

Mz) =1-¢e 2 , définie pour x variant de 0 & + @ .

On effectue une censure au point x,=a, on notera F(x) la nou-

velle fonction de répartition.

Calculons le moment d'ordre 1 de F(x) :

0 o«
Effectuer une censure consiste i rendre nulles les valeurs de x
pour 0 € x < « donc le premier moment de F(x) sera :

(1) }E}(x) =m=2a (1 -9) (1 +%) avec 6 = F(a)

on calculera également le moment d'ordre 2 :

x x
@ .. " a e a
E(x2)=/ x27e dx+/ 2 e T dx = 2a?
O a
- - - S - -z - Z
a a a q? a a 2 5?2
B(x2) =a2¢{ 2(1-e “) -2c¢ g-e gz +a222e +2e g-b-e %2

du fait que x = 0 pour 0< x< a on obtient le moment d'ordre 2 de F(x)

a

5 a a 2
E(x2) = e (2+25+Ca—¥2) a?
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d'ol la variance de F(x) :

) = 32 - [ |

(2) soit 02 =a? (1 -9) [(1 +g)= 9+1]

Si 1l'on effectue le changement d'origine X = x = @ , notons :
m' la moyelle des valeurs de X
0'? la variance des valeurs de X

m' m-a (1 -6)

1

on trouve alors que g

0'2=02-2an(1-60)+ a2(1-0)0

d'apres (1) et (2) on obtient alors :
ml
o'”

2.8 - Fonction de répgrtition de Poisson

(1-9)a

et C! =4/
(1 - 92) a2 v

C'est un exemple de loi discontinue, la variate y Jpeut prendre

les valeurs 0, 1, 2, ... avec la probabilité :

y
Prob (Y=y) =e¢ﬂ1 . (Y=O, 1, 2, vo.)

1
on démontre facilement que la moyenne et la variance sont égales a m. C'est

la loi des événements rares.

Si on fait un relevé des statistiques de crues maximales annuelles xz, on
définit la crue centenaire par xp (1a valeur xp a p % chances d'&tre dépas—

1

sée) p= .01, on note T = = = 100 ans la durde de retour de cet &vinement -

en moyenne on observe une crue tous les 100 ans.

Indépendamment de la définition fréquentiste contestable de la crue cente-
naire ou millénaire, si on admet cette hypothése on peut montrer que la pro-
babilité d'observer 2 crues centenaires en 10, 50, 100 ans n'est pas négli-
geable. Notons Y la variate nombre d'observations supérieures a xp relevées
au cours d'une période fixe de N anndes. Y obéit & une loi de Poisson de

moyenne Np.
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[+
Probabilité (T »y) =z o ° (M)¥

ey k!
N
10 0 100
. 5
1 .095 .393 .593
2 .005 .090 .227
3 - .014 .063

2.9 - Fonctions de répartition utilisées dans les tests

Soit une variate normale centrde réduite (moyenne O, écart type 1)
u2

2

f(u) = — e

N

Effectuons le changement de variable

~—
[8N]
1]
M

2dZ 2 udu

La densité de probabilité de Z s'écerit :

!
NI

g(z) 42 = —— & dz pour Z =0
\/2~7n Z

1
o

pour 2O

I1 s'agit d'une fonction de répartition I incomplete.

-

I1 suffit de poser a = A dans 1l'expression :

=2
-1 - 1
_ a}\ x}\ e ot de se rappeler que [ (5) = \/;
r(A)
Si Uy eeees u, sont n variates normales centrées réduites, la variate
i=n ’
X2 = 1-2-1 u; suit une loi I incompléte de paramétres : a = 5

A

n(3)
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n X
n_¢ -2z
d'ol la densité : h(X2) = ! x2 e 2 (avec X2 = x)
n

n est le nombre des degrés de liberté, nous verrons sa signification dans
la suite. La démonstration est évidente & l'aide des fonctions caractéris-
tiques : on sait que la fonction caractéristique d'une somme de variates
de méme loi de probabilité est égale au produit des fonctions caractéris-
tiques élémentaires, soit : M‘(xt)

n
1

1 3
(1 - Zit)% n=ee

v

Soit n+1 variates normales : u, u,, U, ... u, centrées et rédui-

1772
tes (m:O, c=1);

:
posons v =\/ - Zuf (racine > 0)

Considérons la variate = = s,

<1

on veut calculer Probabilité (s < x).

Sachant que la densité de répartition d'un produit de variates indépendantes

est égale au produit des densités respectives, en posant
s v=uw

2u=sw

et en intégrant sur w on trouve :

(1) n+1
£(s) = 2

vViz  r(3)
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expression dans laquelle n représente le nombre de degrés de liberté. (Rappe-

lons que Student était le pseudonyme de l'anglais Gosset).

4 Ps)

n 30

v

CONCLUSION

I1 est bon d'insister sur les deux formes d'approximation impor-

tantes que sont les fonctions de Gauss et de Gumbel :

XZ
- la premiére est l'approximation en e 2, la partie centrale des densités
de répartition peut souvent &tre approximée par un arc de parabole; sur
le graphique gausso-arithmétique on peut remplacer la partie centrale du
graphe de la fonction de répartition par un segment de droite (entre 15 %

et 85 % par exemple) ;

- la seconde est l'approximation en e ¥ et intéresse les queues des courbes
de densité sur graphigue @g -L (—LF(X)] on peut remplacer une courbe par

un segment de droite, entre les probabilités 95 % et 99.9 %, par exemple.

Bien entendu, ces approximations sont valables dans un domaine

limité (qui peut &tre trés large d'ailleurs) de 1'intervalle [O,ﬂ

Les graphiques suivants donnent une idée de ces approximations pour

différentes fonctions.
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UTILISATION DE L'ABAQUE

Cet abaque permet d'ajuster rapidement la fonction Gamma incompléte
aux distributions empiriques de précipitations et de débits journaliers men-

suels, pluri-mensuels et annuels.

Description de l'abaque :

- 1'axe des abscissesest gradué en valeurs de Cv et A = _l?. H
cv
- les courbes sont cotées en variable réduite u = %., R étant la quantité

dont on veut étudier la répartition en probabilité ;

- 1'axe des ordonnées est gradué en probabilité F(u) d'avoir une valeur

NP ) N R
inférieure ou égale a u = 5

Utilisation :

A partir des domnées de la série de n anndes d'observations d'une station
pluviométrique (Rq... Rn) on calcule :

i=n

= Z Ry 2 i=n =
- la moyemne R = i=1__ ; 1'écart type s = A (R, - R)?
n n—1 1=1 1
- le coefficient de variation Cv =% ou le parametre de forme A = 3:
i s

La probabilité d'avoir une précipitation inférieure a Ri =s . u est défi-

. . . . . R,
nie & 1l'intersection de la verticale d'abscisse ) et de la courbe u, = L

s
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IIT - L'APPLICATION DES MODELES PROBABILISTES AUX FAITS OBSERVES

Ayant établi la distribution empirique d'une série d'observations
on est tenté de rechercher la fonction de répartition qui épouse au mieux
celle-ci, de substituer & une représentation discontinue une représentation
continue. I1 est en effet fort possible de trouver une telle fonction avec
suffisamment de parametres, de méme que l'on peut toujours faire passer par
n points du plan un polyndme de degré n-1. Or "un cambrioleur n'ouvre pas
une serrure avec une clé de cire mais avec un dispositif métallique auquel
il s'efforce de donner la forme la plus probable convenant & la serrure".
Cette phrase d'Etienne Halphen me parait tout & fait adaptée pour caracté-
riser le comportement que 1l'on doit avoir lors du choix de la fonction de
répartition. Une fois ce choix effectué, restera le probléme de l'estimation
des parametres de cette fonction & l'aide des observations. En fait, ces
deux problémes ne sont pas indépendants, ils interviennent lorsqu'on teste
1'écart entre 1'échantillon d'observations et le schéma probabiliste de réfé-

rence.

Dans 1l'exposé qui suit, nous insisterons essentiellement sur les
raisons physiques qui permettent de "justifier" ou plutdt d'assurer la vrai-
semblance du choix d'une fonction de répartition pour représenter les débits,
précipitations et températures, en ne traitant que briévement l'utilisation
des tests d'adéquation classiques dont 1'intérét, primordial dans d'autres do-

maines, est extrémement limité en hydrologie, nous verrons pourguoi.

3.1 - Le choix du mod&le probabiliste

(il ne s'agira ici que de fonctions & une variable)

3.1.1 = Les débits

Remarque :
L'ajustement d'une courbe analytique & 1l'ensemble des fréquences du

débit journalier d'une rividre (365 jours x n anndes) ou courbe des débits
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classés n'est pas une opération statistique au sens habituel, c'est-a-dire
définition d'une fonction de répartition : elle permet seulement de calculer

1'énergie productible en année moyenne.

Dans ce qui suit, nous considérons essentiellement un méme phéno-

méne, c'est-d-dire une urne de composition unique.

Dans tous ces problémes d'ajustements, il y a 4 facteurs physiques
fondamentaux & ne pas perdre de vue et qui assurent une garantie infiniment

supérieure & l'utilisation scolaire de tests statistiques classiques :

- 1'unité de temps 2, 4, ... 24 heures, 1 mois, 1 an
- 1'unité de surface 10 km2, 1 000 km?, 10 000 km2?, 1000 000 km?

le relief plaine-montagne

la saison.

Ainsi la fonction de répartition normale peut &tre une excellente

approximation dans les cas suivants

- un bassin situé a haute altitude, dont 1l'alimentation est purement nivale,
dans les Alpes essentiellement, pour les débits journaliers de printemps
et a fortiori pour les débits moyens mensuels et moyens annuels, les apports

sont régularisés par la fusion nivale ;

- un grand bassin (plusieurs dizaines de milliers de km2) pour les débits
moyens mensuels et annuels, pluriannuels, du fait de la dimension du bas-
sin, le débit & l'exutoire est la résultante d'un grand nombre d'effets
lids & la pédologie, végétation, alimentation en eau, déphasage des débits

des sous-bassins, nappes souterraines ;

- un bassin pluvial de quelques milliers de km? pour le débit moyen annuel

ou bi-annuel.

Dans tous ces cas, on peut admettre que le débit est la résultante

d'un trés grand nombre d'effets additifs, d'importance équivalente.
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L'approximation par la fonction gausso-normale n'est plus valable
si 1'on s'intéresse au débit journalier d'un bassin & alimentation pluviale.
On constate alors que l'effet de la pluie sur le bassin, donc sur le débit,
sera d'autant plus important que les conditions initiales de saturation seront
importantes; on est tenté, et l'expérience le confirme, d'ajuster la fonction
log-normale (Galton—Gibrat). Mais il ne faut pas oublier que si 1l'hypothese
d'effets multiplicatifs est satisfaisante pour les débits non extrémes, & la

limite elle conduit a deux absurdités

- s'il n'y a plus d'eau dans la rivieére, quelle que soit la quantité de pluie

qui va tomber, il ne coulera rien ;

- si au contraire le terrain est completement saturé, il coulera plus d'eau

qu'il n'en tombe.

Cette fonction convient remarquablement pour représenter les dis-
tributions empiriques de débits moyens journaliers de bassins du Massif
Central (500 & 30 000 km?2), de bassins tels que le Rhdne au Teil et le Rhin
3 Bdle en hiver. Parfois la dissymétrie de la fonction log-normale n'est pas
suffisante et on peut utiliser alors non plus la fonction normale appliguée
au logarithme du débit mais la fonction Gamma incompléte appliquée au loga-

rithme du débit.

Une répartition dissymétrique s'observe aussi pour un bassin tel
que la Loire & Blois (38 000 kxm?2), iorsqu'on s'intéresse au débit moyen
journalier maximum de 1'automne (mois de septembre et octobre), c'est le
cas de la plupart des débits extrémes de crue de bassins a alimentation
pluviale; dans ce cas, la méthode du Gradex permet d'obtenir la forme de
fonction de répartition de ces débits dans la zone des faibles probabilités
4 1l'aide d'un raisonnement physico-statistique! le comportement asymptotique
de la distribution des débits extrémes est le méme que celui de la distribution

des pluies extrémes sur le bassin.

3.1.2 - Les précipitations

La pluie est un phénomeéne d'autant plus discontinu que 1l'on consi-

dére un intervalle de temps court.
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Ainsi, dans le Massif Central en hiver (de novembre a mars), si
on étudie les statistiques de précipitations en 2 heures, en effectuant
le dépouillement de pluviogrammes, il ne pleut que dans 20 a 25 % des cas,
ce chiffre peut avoisiner 5 a 10 % des cas dans les régions méditerra-
néennes en été. Si l'on s'intéresse a la précipitation journaliére
(08 - 08 h), la fréquence des pluies atteint 50 % dans l'ouest du Massif
Central et 30 % dans les Alpes du Sud.

Les précipitations sont mesurées ponctuellement mais c'est un
phénoméne organisé dans l'espace et qui présente une certaine cohérence
et homogénéité, compte tenu de l'effet du relief, alors que ce n'est pas

le cas de débits a l'exutoire de bassins versants voisins.

Deux fonctions de répartition fournissent une excellente appro-
ximation de la distribution empirique des pluies pour des intervalles de

temps compris entre 2 heures et 5 jours :

- la fonction ['incompléte avec un parametre de forme A <1 donc de forme

en J ;

[N §=v]
[eR J>+]

- 1a fonction F(R) =1 - ae - Be dans laquelle 1 - (@ +p) =1 -0
représente la fréquence des pluies nulles a = %: et "a" le Gradex,
c'est-a-dire le gradient des valeurs extrémes; F(o) et "a" sont les
paramdtres caractéristiques de la fonction de répartition des préci-
pitations, le paramétf% c étant secondaire

_m o+ Vaﬁ (KO— mz)

@

W
[

c =D -aa
p

Cette dernidre fonction est plus proche de la réalité que la fonc-

tion I' incompléte & l'origine et dans les valeurs extrémes.

Toutefois, pour déterminer la distribution des précipitations
décadaire, mensuelle, plurimensuelle a une station, on obtient une excel-

lente approximation & 1l'aide de la fonction I' calculée par composition des
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lois de probabilité de pluies journaliéres, en tenant compte de 1'autocorré-
lation entre pluies successives si faible soit-elle : cette fonction est

définie pour n jours par :

m:ﬁ.m
n
2 1 ( 1 - " ?) )
02 = 02 + - n - H = = +
n . S 1 -0r, rﬂ%B b= a+p

en notant m la moyenne de la précipitation journaliére et 02 sa variance.

Remarque :

On a parfois utilisé la fonction normale appliquée a la racine
carrée ou cubique ou racine n*°®€ de la pluie, et méme au logarithme. L'in-
convénient de ces transformations est leur trop grande souplesse : on peut

toujours trouver une transformation qui "collera" & 1'échantillon considéré.

3.1.% - Les températures

I1 s'agit de la température de l'air mesurée a 1,50 metre au-
dessus du sol, sous abri. C'est sans doute le seul phénoméne physique,
avec la pression atmosphérique, dont la distribution soit remarquablement
gaussienne quels que soient le lieu, l'unité de temps considérée, qu'il
s'agisse des valeurs extrémes en maximum, minimum ou de moyennes journa-

lieres, mensuelles, etc.

3.2 - Estimation des parametres d'une fonction de répartition -

Leur dispersion d'échantillonnage

Une distribution & une ou plusieurs dimensions étant connue dans
sa forme analytique, sa fonction de répartition dépend d'un ou plusieurs
paramdtres de valeurs inconnues qu'il s'agit d'estimer au mieux a partir

d'observations, exemples
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1 /x -m
-1 E=my-
1 e 2 o}

s \/2n

x

- A=1
1 1 & . ()
P A= P

I1 vy a deux méthodes d'estimation : l'une ponctuelle, 1l'autre
par intervalles. Pour comparer les estimations d'un parametre, on compare

leur distribution d'échantillonnage.

Un estimateur est une fonction de n observations de 1'échantillon

qui fournit une valeur aléatoire dite estimation.

Quelques définitions :

- une estimation t(x1, X .y Xn) consistante, donc converge vers le para-

29
métre estimé T si lorsque n —» 0o 11 existe € et n petits tels que :
probabilité {[t - 1< n} >1 - ¢
- une estimation est sans distorsion ou biais si :

E(t) =7

exemples :

. la moyenne de n observations x . est :

1’

™M B

X = X,

1

n ) e
1
—

i
on peut considérer x, comme des variables aldatoires indépen-
dantes extraites de 1'urne de composition F(x)
B®)=12E (x.) =n
n i

2
on notera que V(X) = %2 v (Xi> = g

. la variance de n observations

E(s?) = E{ :—1 z (Xi —i)"‘} = E{;—l z [(Xi—m) + m—'}?)]z}

placant 1l'origine & la moyenne de la population on a m = O
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c'est un estimateur avec biais; pour éliminer ce biais on écrit

s = 1 2 (x. -2
n - 1

- un estimateur sans distorsion est dit efficace si sa variance est minimum;
on compare l'efficience de deux estimateurs & l'aide du rapport de leurs

variances ;

- 1'estimateur du paramétre ¥ est exhaustif, (c'est-a-dire qu'il n'y a pas

perte d'informations) si la probabilité conditionnelle de Xy X X

2’ ey n’
lorsqu'on comnait la valeur t(x,, ..., x ), est indépendante de ¥ .
1 n

3.2.1 — Méthodes d'estimation ponctuelle

a) - la méthode des moments

Elle consiste a égaler les moments théoriques de la fonction de
répartition aux moments empiriques cbtenus & partir des observations : ainsi

pour la fonction I incompléte

X2 - 12
==, avec X==2 X,
s n . i
i=1
~ g2 -
= = s?2=-2(x, -x)2
P=z n ( i )

Elle est extrémement pratique & mettre en application :

b) - La méthode du maximum de vraisemblance :

Considérons une densité de répartition f(x, ¥ ), qui caractérise la -
s

composition d'une urne. Les valeurs x X ., X_ obtenues & partir de n
iy 1’ 3 n

2’
tirages dans cette urne sont des variables aléatoires indépendantes de méme

(x,¥), la probabilité élémentaire d'une telle suite est :

L(XW,..., Xn,‘x) dx, , dXZ""’ an = f(x1, ¥) . f(x2 ¥)yout, f(XrLX? o dx, ..
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L est appelée la fonction de vraisemblance de 1'échantillon.

La méthode du maximum de vraisemblance consiste & choisir un

estimateur qui rende maximum L, soit pour loge L ce qui revient au méme :

d log L
—_—t =0 (1)
5%
. 0 log L
Moyennant certaines conditions, existence des densites 5 ;
52 log L 5 log L . . )
et g et = 2 < M(x), on démontre qu'il y a une probabilité
S o2 ¥

—1 pour que 1l'équation (1) ait une solution % qui converge en probabi-

1lité vers la vraie valeur ¥ . Lorsque n—— .

Exemple de la fonction I'incomplete :

2X. _
L(Xi) = -—;T—J-—--—— . exp (- 1) . z xix !
pt [f(hﬂ n P i
Zx

loge L=-nA loge/7— n 1oge F(K) - —Fi-+ (A - 1) g 1oge X

La solution du maximum de vraisemblance consiste & écrire :

d loge L _
dA
d loge L 0
5p
2 Xl
Ap = =0
soit o
dlogeF(?\) ’
- - -z p; =
logep N + log x 0
aprés élimination de p= ; , on doit résoudre :
() = 1og A dlog, r(a) e T
I = log, S " ogeX-logeg

(g étant la moyenne géométrique des Xi)'



IIT-9

Une estimation approchée est fournie par :

+ z + 1 _
A= 7 s, avec z = log x - log g
z
a logeF(?\)

dA

T1 existe des tables de la fonction

Calcul des variances de ces deux estimateurs

loN |

2
2

10~ A=

On utilise 1'expression classique pour une fonction de moments :
3 dA 2 3N BA - S\ -
V(A) = 2V BNCTAS . ==)?2
(A) (66) (s) + e o ooV (x.s)+ (&n) V(%)

sachant que V(s) = 2—1— p? (A + 3)
n

Cov (X s) =p? N

n

VGI-) = -%i

d'ol : v =22+ 1)
n

~ dlog_ r(A) _
20~ logA——-——f——:logex—logeg

e
dA

On obtient la variance de cet estimateur A en inversant la matrice

d'information :

%) 52 loge L
I ¥)=-EF | == 1|; ¥. sont les parametr
757 3 paramdtres
1 J
soit : V(A) = A
d2 log I'(A)
n g -
daz?

Or la fonction 42 1O£d)(\72\ = 1)! est tabulée
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Notons :

HO 1'hypothese de travail,

D une fonction des observations : on convient de rejeter Ho sid >Do

correspondant & une probabilité fixée a priori,

D >DO est la zone de rejet ou région critique..

On teste 1l'hypothese I—IO contre une hypothése alternative H,|

. erreur de premiére espéce : rejeter Ho quand HO est vraie

erreur de probabilité «

. erreur de deuxiéme espece : accepter HO quand HO est fausse

erreur de probabilité p

Le choix de la région critique s'effectue ainsi : il faut minimi-

ser f ou maximiser 1 - B = puissance du test.

Exemple d'une fonction normale de variance égale 4 1 et dont on cherche &
tester pour la moyenne l'hypothese nulle m = ho , 1'hypothése alternative

m = h,, la moyenne arithmétique X étant calculée sur un échantillon de taille n :

La probabilité (X >c/Ho) = « , sachant que X est une variable
aléatoire de densité de répartition :
£(%/H ) = \/Zl__ . % & - ho)é
0 2n
d'otr u (@) = \/'r; (c - ho) d'aprés la table de Gauss [u, F(u)] ; d'autre part
(1 = ) = probabilité (T e W/Hq), W étant la région critique, soit :

1_ 2
VLN i
(1-/5)-/ i
C.

- h1 )n
On peut voir que le risque de deuxiéme espéce diminue, ou 1 -p—s1,

lorsque n augmente.
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T

2 : N
3.3.1 - Le test du X utilisé comme test d'adéquation :

Problime général : une fonction de répartition F(x) étant domnnée,

on veut lui confronter un échantillon de n valeurs x 9 X

170 n

Le principe consiste a associer & F(X) par un découpage en N

points a,, ..., ay une urne a N catégories.

p . c .1&me . . .
Une épreuve x constituera une épreuve de la j catégorie si

Ty ES 9

Les probabilités attachées a cette urne seront donndes par :

aJ_1
N (n, - np.)2
on calcule alors la quantité X2 = I —Il——J  qui est une "distance"
j:'] nPJ

entre la composition de l'urne fictive et la distribution empirique définis-
sant 1'échantillon : on teste si cette valeur est significative ou non. Pour

cela, on se définit a priori un seuil de significatﬁon tel que :

2 2 2
prob (2> %) =1 - F(X ) = a £(x?)
c'est-adire si le X2 > X4 on
met en doute la représentati-
vité de 1'échantillon par F(x). %
° V77
0 hE O

Ici, on peut ouvrir une parenthése pour définir la loi multinomiale

caractérisant la composition d'urnes & N catégories.

Soit une population dont chaque individu est affecté d'un carac-
tére pouvant prendre N valeurs Aq, A2, cee AN dont les probabilités respec-

tives sont : p1, cey pN.

Quand on extrait de la population un échantillon de taille n, la

probabilité d'obtenir n, individus possédant le caracteére A1 n,, le carac-
tere A2 ... est o
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Prov ( ) = SR : (1)
ro N,y eoey = —— D, ... savec n = n,

1 WL oy N SN

1
N+= -0
a4 l'aide de la formule de Stirling (nl #/ n 2 e Ve ) on peut montrer
B L n. - np.

que les variables centrées réduites x, = L L, lorsque n croit ——» o,

! Ve

tendent vers la loi de Gauss :

2 2

X X

1 1 R .

( N 1 Py
27) 5 \[Be ppr e my

Cette loi n'est autre que la fonction X2 a v =N - 1 degré de

’

liberté (les n, sont 1iés par la relation (1) donc on enldve 1 degré de

liberté & N). On voit ici le lien avec le problime évoqué en début de

paragraphe.
B ’ ‘ ko (n, -mp.)
De plus, on remarque que X2 = Z —1 3" suit approx1mat1—
3—1 an

vement la loi du X2 & K-1 degrés de liberté, la convergence ayant lieu lors-

que n —= 2.

On ne sait pas facilement établir la loi de probabilité exacte
de X2, mais on peut comparer les moments des deux distributions, par exemple

les deux premiers moments :

X2 théorique 7(2 réellement calculé

= (k-1) ; m' = K-1
02 = 2(K-1) ; 0'2—2(K—1)——(k2+2k—2 z-)
py = 8(K-1) 5wy = m4)-—Mmp)+@g&,p.f>

Les deux moyennes sont identiques car :

- % np. (1 - np.
E[Z (nj np_])_ npj( npn)

. B np.
[ P P

E (x2) =

= (1 -p)=K-1
( pJ)

On voit que o2 dépend du nombre de classes k, de la taille de

1'échantillon n et des probabilités pj; les moments centrés de X2 font inter-



1
venir en plus 2 1 s POour ul et I - s pour u;.
Pj 3 p. 4
Dans le cas particulier ol l'on prend tous les P, égaux et pour
un nombre de classes compris entre 2 et 10, on sait alors établir la loi

exacte de X? dont les moments sont :

m' = K-1
]
o'2=2(K—1)(1-5)
)3 K-8 _ k-6
= 8 (K-1 1 &8 - A=0
w’ =8 (@) (1 +EB KR

1
avec pj =z

On peut alors montrer que la courbe continue du X2 théorique & k-1
degrés de liberté est une bonne approximation de la fonction de répartition
discontinue du X? calculé. On voit en particulier que les moments ne dépen-
dent plus que de n pour la variance et K et n pour les moments d'ordre supé-

rieur a 2.

Toutefois, méme dans ce cas favorable, en prenant n = 35 et k = 7,
on a alors p = .143. Méme dans ce cas ol l'on élimine l'arbitraire des limi-
tes de classes, on n'assure pas mieux la qualité de 1l'adéquation dans les

queues de distributions.

Remarque : un trop grand nombre d'observations rend alors le test trop sensi
ble & un écart qui ne pourrait &tre dfl qu'ad 1'échantillomnage (pour les

valeurs extrémes surtout).

Généralement on confronte F(x, Bq1 wees 9k) fonction dépendant de

k paramétres & l'échantillon x -+ X; on estime J a l'aide

1’ 1.’ ""ok
des observations, ce faisant on diminue le nombre de degrés de liberté de k,

dans ce cas on utilisera un X? & n-k-1 degrds de liberté.

On voit tout de suite la limitation de ce test en Hydrologie ol
l'on a affaire a de petits échantillons : pour avoir un effectif de 4 & 5

ai) on devra prendre un intervalle assez

valeurs par catégorie ( ¥
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large, on diminue ainsi la sensibilité du test, d'autre part les valeurs
des queues de distribution qui sont les plus intéressantes car elles per-
mettent de départager les fonctions de répartition confondues dans la zone

centrale, sont inutilisables puisque d'effectif 1 ou 2.

3.3.2 - On peut alors essayer un test non paramétrique, le X2 fait en
effet partie des tests paramétriques, étant dépeundant des paramétres de
F(x); Kolmogoroff a proposé de tester le plus grand écart entre la distri-
bution empirique Hn(x) et la distribution théorique F(X), avec un risque «a

fixé & l'avance, on a calculé la probabilité :
Prob { borne supérieure[ Hn(x) - F(X)l :>iDn-, =«.

Exemples des valeurs de D
n,%

n 1 2 3 4 5 6 7
K =.10 .95 LT76 .642 .564 .510 .470 .438
L= .01 .995 .929 .828 .T33 .669 .618 STT
n 8 9 10 | 15 20 25 30 35
®=.10 | .411 | 383 | .38 .304 | .264| 24| .22 \1/_2_51
L= .01 .543 514 .430 .404 .356 .32 .29 i;é%%

I1 existe un nombre important d'autres tests paramétriques et non
paramétriques, plus ou moins complexes, notre propos est simplement d'illus-
trer le mécanisme du test en statistique. Les tests ne sont que des garde-
fous, et il serait malhonnéte ou naif d'utiliser seulement le résultat d'un

test pour affirmer ou rejeter une hypothése en hydrologie.
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TABLE 5
FRACTILES DE LA LOI DE X°

La loi de X? est définie par la probabilité élémentaire

2 a 1 2,3-1 -‘;3 2
£f(X%,v) d(X9 —m(x) e d(X?y (0 ¢ X* < @)

Siuy,u, ..., U, sont n variables indépendantes, distribuées suivant
la loi normale réduite (m = 0, 0 = 1), la somme de leurs carrés, Z'uf est
distribuée en loi de X? 2 v = n degrés de liberté. Il en est de mé@me pour

2
y -(i'-;c'zﬁ)— , Siles n variables x, indépendantes suivent la loi normale (m, J),
: o= 1
Si dans 1'expression précédente on remplace m par son estimation X = a Z X,
-2 i
la quantité Y (x—;'%l})— est encore distribuée en loi de X¥°, maisavec v = n- 1

degrés de 1Iiberté.

La table donne les fractiles de la loi deZXz, c'est-a-dire les valeurs
X? telles que Pr{X® < X}1= P, Ona PriX? > X121 - P = Q.
Par exemple, pour v = 5, on a

Pr{X? <12,8] = 0,975 Pr(X? < 0,83) = 0,025
Pr{0,83 < X*<12,8] = 0,95

0,999 | 0,995 | 0,990 | 0,97S 0,35 0,30 0,50 0,10 | 0,05 | 0,025{0,010 {0,008 | 0,001 |Q=1-P

Y P 0,001 0,005 | 0,010 | 9,025 0,08 0,10 0,56 0,30 | 0,53 | 0,9750,990 | 0,995 | 0,999
1 - - - 0,001 | 0,004 | O,C18 | 9,455} 2,71 | 3,8¢ | 5,02 | 6,63 | 7,88 |10,8
24| 0,002} 0,010} 0,020} 0,051 0,103 0,211 1,39 4,61 | §,89 | 7,38 | 9,21 j10,6 |13,8
3| 0,024 | 0,072 0,115 | 0,216 | 0,352} 0,384 | 2,37 6,25 | 7,81} 9,35 }11,3 12,8 |16,3
4 0,091} 0,207} 0,297 | 0,484 | 0,711 | 1,06 3,38 7,78 | 9,48 11,1 13,3 14,9 }18,5
5| 0,210 0,412 | 0,554 | 0,831 1,15 1,61 4,35 »24 |11,1 12,8 15,1 15,7 {20,5
8! 0,381 0,676 | 0,872 .24 1,64 2,20 $,35 |10,6 {12,565 14,4 }16,8 |18,5 }22,5
7| 0,598 | 0,989} 1,24 1,69 2,17 2,83 8,35 12,0 [14,1 16,0 18,5 20,3 [24,3
8} 0,857 | 1,34 1,65 2,18 2,73 3,49 7,34 |13,+¢ |15,5 17,5 20,1 |22,0 |2§,1
9 1,15 1,73 2,09 2,170 3,33 4,17 8,34 | 14,7 (16,9 (19,0 21,7 [23,§ |27,9

10| 1,48 2,16 2,56 3,25 3,94 4,87 9,34 |16,0 18,3 (20,5 (23,2 |25,2 |29,6

11} 1,83 2,60 3,05 3,32 4,57 §,58 |10,3 17,3 19,7 21,9 (24,7 (26,8 |31,3
12 | 2,21 3,07 3,57 4,40 5,23 6,30 11,3 18,3 (21,0 23,3 26,2 }23,3 32,9
13| 2,62 3,57 4,11 5,01 5,89 7 12,3 13,8 22,4 24,7 27,7 29,8 34,5
14 | 3,04 4,07 4,66 3,63 6,57 T 13,3 21,1 23,7 26,1 29,1 31,3 |36,1
15 | 3,48 4,60 5,23 6,26 7,26 3 14,3 22,3 25,9 (27,5 |30,6 32,8 [37,7
18 | 3,94 5,14 $,81 6,91 7,96 3 15,3 23,5 |[25,3 |28,8 32,0 |34,3 [39,3
17 | 4,42 5,70 8,41 1,56 8,867 |10 16,3 24,8 (27,8 30,2 33,4 [35,7 |[40,8
18 | 4,30 6,26 7,01 8,23 9,33 |10,9 17,3 31,5 34,8 37,2 [42,3
13 | 5,41 6,84 7,63 8,21 |io,1 11,7 18,3 27,2 20,1 }32,3 36,2 |38,6 |[43,8
20 | 5,92 7,43 8,26 9,89 |1ig,9 12,4 19,3 28,4 [31,4 34,2 37,6 40,0 (45,3

31 | 6,45 8,03 8,90 |10,3 11,6 13,2 20,3 29,6 (32,7 35,5 [38,9 [41,4 |46,8
22 | 6,98 8,64 8,54 (11,0 12,3 14,0 21,3 30,8 33,9 |36,8 |40,3 |[42,3 |48,3
23| 7,53 9,26 10,2 11,7 13,1 14,8 22,3 32,0 (35,2 (38,1 |41,6 |44,2 49,7
24| 8,08 9,89 |10,9 12,4 13,8 15,7 23,3 33,2 [26,4 39,4 (43,0 |45,5 51,2
25 | 8,65 [10,5 11,5 13,1 14,6 16,3 24,3 34,4 [37,7 [40,6 (44,3 [46,9 |52,8
26 | 9,22 11,2 12,2 13,8 15,4 17,3 25,3 35,6 (38,9 41,9 45,6 [48,3 54,1
27 | 9,80 }11,8 i2,8 14,8 16,2 18,1 25,3 36,7 (40,1 43,2 |[47,0 |49,6 |S55,5
28 |10,4 12,5 13,5 15,3 16,9 18,9 27,3 37,9 |41,3 |44,5 48,3 |51,0 (56,9
29 |11,0 13,1 14,3 16,0 17,7 13,8 28,3 39,1 [42,6 [45,7 (49,6 |352,3 |58,3
30 | 11,6 13,8 15,0 16,3 18,3 20,6 28,3 40,3 |43,8 47,0 30,9 53,7 |59,7

°
©
@
o
©
Kot
w

Lorsque ¢ > 30 on peut admettre que la quantité V 2{1 - Y¥2v-1 sguit ap-
proximativement la loi normale réduite.

Exemple :

Calculer la valeur 7(} correspondant & P = 0,90 lorsque v = 41, La
table 1.3 donne, pour 1’ =0,90, u= 11,2816, D'ou :

y 2 2
¥ = (40,00 *2 2 vl 1 [1,2816 + V82-1] --;- (10,28186)* = 52,9

0,90 2

(Valeur qui coincide d'ailleurs avec la valeur exacte)
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Températures moyennes.

 III-18

19353 - 1967
15 mai mai amuslle
1933 11.5 10.9 8.5
34 13.5 13.2 9.0
35 9.5 9.7 8.1
36 12.5 11.4 8.5
b1 12.5 12.7 8.9
38 16.7 9.8 8.8
9 12.0 T.9 8.0
1940 13.0 11.4 T.9
41 11.7 7.8 TeT
42 9.0 12.5 8.3
43 2.0 12.6 9.6
44 10.2 12.2 8.1
45 19.7 14.0 9.7
46 5.0 114 8.8
47 13+5 14.3 10.2
48 1507 12.8 9.8
49 14.7 9¢3 9.8
1950 16.0 13.2 8.8
51 55 a1 8.2
52 14.5 131 8.7
53 11.0 13.0 8.7
54 10.2 10.4 7.6
55 8.0 10.7 8.5
56 11.0 12.0 6.6
57 4.0 8.7 83
58 10.5 135 8.3
59 8.7 12.0 9.3
1960 16.3 133 8.2
61 18.6 10.3 9.4
62 5.8 10.2 T.6
63 7.0 9.9 T4
64 13.2 12.3 8.2
65 18.4 10.7 7.7
66 15.0 10.4 8e3
67 1.7 10.4 8e3
m 19.5 11.4 8.5
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DEBITS MOYEMS DU MOIS D'OCTOBRE

:
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N = O

La LOIRE 3 BLOIS

a m )
170 1913 425 1938 194
137 14 149 39 350
172 15 120 1940 444
317 16 9 41 125
25 17 187 42 81
503 18 141 43 333
66 19 85 44 505
47 1920 439 45 54
549 21 52 46 54
314 2 147 47 36
80 23 119 48 T4
91 24 81 ) 30
508 S 125 1950 49
760 26 57 51 107
o 7 9 52 203
104 .2} 82 53 53]
76 29 120 54 136
310 1930 441 55 58
36 31 143 56 367
175 32 289 57 59
YE] 33 590 58 254
212 34 65 59 v
291 35 214 1960 562
79 36 136 61 T4
151 37 92 62 47

E.D. F.- DiVISION TECHNIQUE GENERALE
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IV - NOTIONS D'ERREUR - AJUSTEMENT D'UNE FONCTION

Nous essaierons dans ce chapitre d'analyser cet ensemble d'incer-

titudes que le technicien (physicien, ingénieur, ...) baptise "erreurs".

Les quelques réflexions qui suivent, tentent de mieux appréhender
la notion d'erreur et remettent en cause des définitions inadéquates, pour
répondre & la demande fréquente de ceux qui effectuent la mesure de phéno-
ménes physiques ou qui interprdtent (au sens large) ces observations numé-

riques.

I1 n'est peut étre pas inutile de rappeler que chaque fois que
1l'on effectue une mesure, on ne trouve qu'une valeur approchée de la gran-
deur que l'on mesure, et, si 1l'on répéte un grand nombre de fois la mesure
de cette grandeur dans les mémes conditions, on observera une certaine répar-

tition de ces résultats de part et d'autre de la "vraie" valeur.

De plus il est fréquent d'utiliser ces résultats de mesures (x)
pour étalonner une relation physique ou statistique de la forme y = f(x).
Dans ®t ajustement, en général, le modéle dont on cherche & caler les para-
metres d'aprés les observations, n'est lui méme qu'une approximation de rela-
tions réelles, aussi précis et fideéle soit-il, méme s'il est basé sur des

considérations théoriques.
On se trouve confronté essentiellement & quatre types d'erreurs :

19~ 1'erreur d'adéquation du modéle, c'est-a-dire la distance entre une
structure d'hypothéses et la réalité, il serait préférable de dire 1'obser-
vation de la réalité ; nous incluons dans ce cas l'effet d'échantillonnage,

c'est-a-dire domaine de mesures et leur fréquence ;

20~ 1'erreur de mesure, purement aléatoire, et qui existe quelles que

soient les qualité et précision des appareils de mesure ;

39— l'erreur absurde (une valeur exceptionnellement fausse pour une

cause fortuite);
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4°- L'erreur systématique, elle est généralement inhérente & 1l'appareil
de mesure. On peut sans doute inclure dans cette catégorie l'erreur due &

la non invariance des conditions de mesure, dans le temps.
Ces deux derniers types d'erreurs sont les plus faciles a détecter.

Une telle classification peut paraitre séduisante et simple, mais
ce qui fait la difficulté des problemes d'erreurs est qu'en pratique ces
quatre types d'erreurs sont mélangés et qu'il n'est pas toujours aisé d'effec-
tuer une discrimination pour identifier la ou les sources d'erreur et faire

la part de leur contribution & 1l'erreur globale.

Les exemples ol de tels problémes sont rencontrés ne manquent pas :

. ajustement d'une courbe de tarage - contrdle piézométrique -
relation pluie-débit ou débit-débit (propagation) - auscultation

d'un grand barrage, etc.

4.1 - Revue sommaire de quelques définitions classigues

Dans de nombreux ouvrages (physique ou mathématique appliquée) qui
traitent ce probléme, on calcule une erreur (absolue ou relative) maximale

possible.

Ainsi, soit M une grandeur dont la valeur m est obtenue en mesurant

les valeurs x, y, z des grandeurs X, Y, Z et en appliquant la relation :

m = f(x, Y, z)

par exemple,

-m=X+y -2z

1'erreur absolue maximale (?) s'évalue comme la somme des erreurs absolues

maximales (?) commises sur chacun des termes fm = &x + Ay + Oz

-m=XL
Z
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1l'erreur relative maximale (?) s'évalue comme la somme des erreurs relatives
maximales (?)

é‘i:&+é¥+é§.
m X NA Z

De fagon générale, les deux principales préoccupations sont, sur

un exemple simple :

(a) connaissant la limite supérieure des erreurs obsolues faites sur

x et y, trouver la limite supérieure de l'erreur faite sur

n=f(x, y) ;
(b) on veut calculer m avec une erreur absolue inférieure & e, avec

quelle précision faut-il connaltre x et y ?

Réponse & (a) : k et h étant les erreurs faites sur x et y (sans autre défi-
nition), on calcule les dérivées partielles du premier ordre en partant

d'une solution approchée :
m' = f(x + h, y + k), alors

A = £(xn, yok) - 2(x, y) #n' £ (=, ) + x5 (2 7,),

(X1 et ¥, valeurs voisines de x, y)

-+

=

£ |h ' k f& , on calcule alors le second membre par exces.
X

Réponse & (b) : on veut |£ﬁ1 <e, soit 'h f%] + k lf§_|< e , il suffira de

prendre | h|< —& _ et lkl < —£_ le second membre étant calculé par
? 1%l 1%l

défaut.

Ainsi ces calculs d'erreurs ne font explicitement référence qu'a
1l'erreur de mesure, mais sans évoquer la possibilité d'une référence proba-

biliste, par l'intermédiaire de la fonction de répartition de 1l'erreur.

3i, parfois, on aborde 1l'aspect aléatoire de l'erreur, on fait
?
systématiquement référence & la loi "normale" des erreurs, ce qui est trop

restrictif.
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Nous développerons dans la suite les différents aspects de

1l'erreur en étudiant les problémes d'ajustement d'une fonction ou modele.

4.2 - Ajustement d'une relation fonctionnelle entre deux variables

continues

(approximation au sens mathématique, lorsque l'erreur de mesure

est nulle).

Soit y = g(x) cette relation fonctionnelle.

On veut 1l'approximer par une fonction simple ou "modele" de la

forme :

y=f‘(x)+a pourXIs x < XS
f(x, a, b, c, ...) représente une fonction de x dépendant d'un ou plusieurs
paramétres a, b, ¢, ...; € représente 1l'écart entre la liaison réelle et le

modéle adopté comme image de cette relation.

Le modéle, défini par une expression analytique, va résulter d'un
choix a priori effectué parmi plusieurs fonctions possibles. Il restera alors
a calculer les valeurs des parametres a, b, ¢, ... en imposant certaines condi-
tions & €, c'est-a-dire une norme, pour que la distance entre le modéle et la
réalité soit la plus petite possible. Citons quelques critéres de proximité

entre f(x) et g(X)

- minimiser le plus grand écart e, soit
Min{ Max [g(x) - f(x, a, o, c)]} ;

- minimiser la somme des valeurs absolues des écarts e, soit

Minu/'XS |e] dx =.///XS lg(x) - f(z, a, b, c)l dx

I I
cela revient 4 minimiser la somme des aires, mesurées en valeur absolue,

et situdes entre g(x) et f(x, a, b, c) ;



- minimiser la somme des

sur f(x, a, b, c)

- minimiser la somme cs

soit
3
Min €? dx
*1
Les deux premiers

mettre en oceuvre. Le dernier
simple, nous 1l'expliciterons

moindres carrés.

IV -5

carrés &s projections orthogonales de g(x)

carrés des écarts entre f(x, a, b, c) et g(x),

%5

= ’/// [g(x) - f(z, a, b, c)]2 dx

criteres sont plus lourds et plus cofiteux a
critére est d'un usage plus commode et plus

plus en détail, on 1l'appelle aussi méthode des

Chercher le minimum de 1'expression entre crochets revient &

écrire que les dérivées partielles d'ordre 1, par rapport a a, b, c,

sont nulles et résoudre ce systéme de p

tion f(x, a, b, c,

dquations & p inconnues si la fonc-

by

.) dépend de p paramdtres.

En supposant les conditions de continuité, dérivabilité,

requises, on peut dériver sous le signe somme et écrire :

XS 2
el [g(x) - f(x, a, b, c, ...)] dx
pe da

=0
I
g .
'—6- [g(x) - f(X, a, b, c, )] dx =0
X db
I
soit encore
ST | 3z, 2, © )
_?//( glx - f(x, a, b, c, X, ,6a, Coee) 42 = 0
1
Xq ‘
-2 g(x) - f(X9 a, b, C,...) 6f<X’ a, b, ) dx = 0
X . J db ,
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Comme exemple d'application nous développerons ces calculs en uti-

lisant le modéle linéaire.

On considére la relation théorique y = g(x) = e et 1'on va
approximer cette fonction par les quatre modeles simples suivants (la liste

n'est pas exhaustive) :

1]
®
o]
+
o

£,(x) = 2, 1
fz(x) = a2 X2+ b, X+ ¢
£5(x)

f4(x) @

pour 1€ x g 2.

Il
[\
M

N
+
[e]

]
Y
M

revient & résoudre :

{_/2 (eX.a1 x-c)dx=0

2
-%}f (eX - a1 X - 01) xdx =0

°

d'ou

a, = 4.60 et ¢y = -2.23%

fq(X) v 4.60 x - 2.23

4.2.2 - Ajustement de fz(x)

2

2
. X _ > _ _
Mln.//f (e a2 b:d b2 X 02) dx

1

revient & résoudre :
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2
2/// (e a2 X b2 X 02) dx =0
1
2 bie
- - 2 _ - =
d %/// (e a2 X b2 X c2) x dx 0

2
—///’ (eX -2, x2? - b2 X - 02) x2dx =0

d'olu : a, = 2.458, b, = 2.784, Cy = 3.111

et fz(x) =n) 2,46 %2 - 2.78 x + 3.11

2 . ,
Min/ (e —a3X2—03) dx

revient & résoudre :

( 2
—2/// (eX - a3 x2 - 03) dx = 0

1
<
2 .
-/ (e —aBXZ—CB)XZdX=O
L 1
d'ol :
33 = 1.53%7, 03 = 1.085
et fB(x) =A 1.54 x2 + 1.09

4.2.4 - Ajustement de f4(x)

Dans ce cas on doit effectuer un changement de variable a 1l'aide

de la transformation logarithmique :
log(y) = log [f4(x)] =alogx +f

or log(y) = log(e®) = x ;



2
2
Chercher le minimum de /// (x -alogx-p) dx
1

revient & résoudre :

.
—_/2 (x —alogx -B) dx =0
1

2
-_//’ (x —alogx -=p) log x dx = 0

L 1

d'ol :

a = 1.458, B = .936

et f4(x) . 2.55 x1'46

4.2.5 - Précision de ces ajustements

Si 1l'on note s2 cette précision, il suffira de calculer les quatre

valeurs de S2 :

2

2
52 =f [ex - fj(x)l dx pour j =1, 2, 3, 4

1

On voit que le meilleur ajustement est fourni par le modéle f2(X)

dans l'intervalle 1 s x g 2.

4.3 - Ajustement d'une relation fonctionnelle sur des couples de valeurs

discrétes

La fonction y = g(x) est définie par points, n couples de valeurs
(xi, yi), avec exactitude; on est donc ramené au probléme précédent mais en
considérant des valeurs discrétes, 1l'application des moindres carrés revient

a chercher le minimum de :

2
E= ? yi - f(xi, a, b, c) ]
i=t

soit & résoudre le systéme (en se limitant & 3 paramdtres) :
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SE = 0

da

SE =0
| b

8E =0

fole}

et nous sommes ramenés au cas précédent, si l'on prend comme exemple l'ajuste-

ment des quatre modeéles proposés fj(x, a, b, ¢) & la fonction y = e~

Remarque importante : bien que X et 75 soient des valeurs mesurées sans erreur,

la répartition des n valeurs de x; sur le segment [1, 2] va condi-

tionner les ajustements par les moindres carrés.

Prenons comme exemple les dix couples suivants :

X, = 1.05, Ty = 2.8577 X, = 1.1, V, = 3.0042 X3 = 1.15, y5 = 3.1582
x, = 1.20, Yy = 3.3201 X = 1.25, V5 = 3.4903 5 %, =1.30, y, = 3.6693
x, = 1.35, Vo = 3,.8574 Xg = 1.40, Vg = 4.0552 ; X = 1.6, Vg = 4.9530

%O=19, Y10 6.6859

Dans ce cas les paramétres des 4 modéles précédents estimés par les

moindres carrés fournissent les ajustements suivants

f1<x) = 4.45 x -2 précision S¢ = .158
;=
£f(x) = 2.18x2 -1.96 x + 2.52 s = .01
2 52
fB(X) = 1.52 x2 + 1.13 s, = .049
£ (x) = 2.58 x % S 025
*4X = . X Slogedr—"

Les paramdtres de ces ajustements sont & comparer a ceux du § 4.2.

4.4 - Ajustement d'une relation avec erreur de mesure

Nous calculons & présent les param®tres respectifs des quatre

by

modeles précédents, disposant de 20 couples de valeurs (xi, yi>, X étant
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une valeur certaine et v mesuré avec une erreur dont nous avons imposé la
fonction de répartition gaussienne de moyenne nulle et d'écart type .2.
Par la méthode de Monte-Carlo, nous avons alors tiré 20 écarts €, que 1l'on
a rajouté aux 20 valeurs exactes de Yi' Pour éviter le probléme posé par
la répartition des X nous avons adopté une répartition uniforme sur le

segment E,Z]

X, 1.05, 1.10, 1.15, 1.20, 1.25, 1.30, 1.35, 1.40, 1.45, 1.50,
s 2.8, 3.10, 3.10, 3.23, 3.58, 3.89, 4.21, 3.68, 4.28, 4.7,

z 1.55, 1.60, 1.65, 1.70, 1.75, 1.80, 1.85, 1.90, 1.95, 2.00,
vy 4.89, 5.22, 5.25, 5.17, 5.54, 5.97, 6.41, 6.42, 7T7.15, 6.92.

par la méthode des moindres carrés on obtient alors :

£,(x) = 4.45% -2 sl o= .23
fz(x) = 1.42x2+ .11 x + 1.19 st = .21
fj(x) = 1.46 fz Z 1.27 st = .20
f4(x) = 264 51 oge = .046

On peut comparer les modeles qui s'ajustent le mieux dans chacun

des 3 cas de figure (continu, discret, avec erreur) :

f2 = 2.46 x2 - 2.78 x + 3.1 f=2.18%x2-1.96 x + 2.52 f3 = 1.46 x2 + 1.27

et en particulier comparer leur valeur lorsqu'on les extrapole a x = 3 et §

par exemple.

4.5 - Exemple d'application : ajustement d'une courbe de tarage pour le

Buech aux Chambons (B.V. 72% km?2)

On dispose des résultats de 11 jaugeages, donc 11 couples hauteur-
aévit (E;, Q) :

Hi 2.255, 2.43%5, 1.345, 3%.060, 0.935, 0.810, 0.830, 0.570, 1.070, 2.640, 1.150

Qi 42.5, 52.2, 13,6, 96.5, 6.64, 4.76, 5.83, 2.16, 9.1, 62.5, 10.3
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1'ajustement d'une relation linéaire donne :

Q # 35 H-26+c¢ , s, 4 8 n’/s

la relation n'est manifestement pas lindaire (systématisme des écarts).

L'ajustement apres transformation logarithmique fournit :

Q # 8 H2'2 R 1'écart type des logarithmes étant

Trois mesures effectudes récemment montrent que malgré le faible
nombre de jaugeages utilisés pour ajuster la relation précédente, et, pro-
bablement du fait de la stabilité de la section au droit de la station, la

courbe de tarage ajustée est correcte :

1]

5.35 et Q = 335 observé

{H
" et

4 =320 calculd

{ H=73.75 et Q = 130 observé
" et @ = 146 calculé

I H= .69 et Q = 3.6 observé
1 " et § = 3.5 calculé

Remargue

Quelques exemples de fonctions utilisées comme "modeles" de repré-

.066

sentation de phénoménes physiques observés par 1l'intermédiaire de mesures. la

technique d'ajustement étant celle des moindres carrés on considérera des
combinaisons lindaires de fonctions simples, ou de variables x transformées

(log, puissance g, exponentielle)

£

- fonction polynomiale :
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m
- fonction sinusoidale : y. = Z ¢y cos (Ezi . o ) pour i =1 4T
K=0 T K

4.6 - Comparaison de la méthode des moindres carrés et de la méthode

des moindres distances

L'exemple suivant illustre cette comparaison pour l'ajustement d'une

relation linéaire a une série de n = 23 couples (Xi, yi) :

x 96, 219, 149, 126, 184, 76, 219, 170, 127, 184, 166, 136,
y 388, 609, 606, 535, 431, 376, 655, 463, 411, 634, 559, 572.

x 121, 246, 73, 173, 119, 269, 146, 176, 249, 201, 345,
y 613, 601, 449, 423, 544, 794, 584, 717, 631, 769, T37T.

4.6.1 —= Ajustement de la relation y' = ax + b par les moindres
carrés
n 2 2 2
On minimise £ €, =32 (y. -y!) =2 (y. - axi - b)
joq L i i i

ce qui revient & chercher la solution de :

'j‘

]
(@]

@ —EZ(yi—axi—b)X.

i
® —ZZ(yi—axi—b)

I
o

Si l'on pose s -7 = Yi

et x; - X = X d'apres @, la relation
@ s'éerit T (Y, -aX ) X, =0
i i’ %1 :
soit : ¢ >
LI X P
= —i.L

z X,
i

la précision de l'ajustement est définie par :

sz=125?=

1 ( )2 2 2 &2
e 1 i =2\ -8 =Sy~ at sy
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Calculer a, b, ainsi que 1l'écart type de 1l'écart e sachant que :

in= 3 970 ; Zyi=13‘|o1 ; inyi=2382503 H
2X12=77844O ; Zyiz=7787 667

4.6.2 - On peut ajuster la relation y= cx + d par les moindres

distances

On veut donc minimiser 2 qi’" ,

2 2

n
soit Zqf =3 (x. - xi) + 2 (yi - yi) = minimum

i=t %

On établira la relation suivante entre (fcj., }l) et (Xﬂ. , yi) :

cx. + d
i

"~
<>
1]

_
c? + 1

—~
4>
I

(cyi +x; - cd)

1'expression précédente devient alors, aprés transformation :

2
2 (Yi - CX{ - d) L;é, 4 +
o= DR T
2 4 i=21 c? + 1
A
on cherche alors la solution du systéme : Ye t- - - -
) ' .
& 2 q. (y. = cx. - 4d) b
—_——= -2 3 L L =0 + : ;
&dd c? + 1 : '
- ]
5 2 X Q.,' x
zq,
= =2 s (a2 + 1) (yi-— cxi—d) x. +c2 (y —cxi—d)

@ 3¢ T (az + 1) i i

d'aprss @ la droite passe par le barycentre du nuage de points, ainsi

d'ailleurs que la droite des moindres carrés, et si l'on pose :

"_=Y .—_= .
v, =¥ 5 et X, - X Xl

la relation @ devient :
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2 _ 2 - 2 =
® elzyz-zx2)+(1-c?) X ¥, =0

¢ est solution d'une équa?ion du 2éme degré :

a + (a2 + 4)1
Cc =

2
2 2
avec a = 2Y¥ - 2%
2 X Y.
i i

La précision de l'ajustement s'obtient d'apres :

2 2
2 - - -
e DISES (yi ox; a) b (Yi cXi)

d n n(1 + c2) ECNE)

en développant cette expression et en utilisant la relation (:) , on obtient :

c?2 2 X2 - 3272
2 = i i
d (c2-1)n

Calculer les valeurs de ¢, d, et s, sur l'exemple.

d

Tracer le graphe des couples (Xi, yi) ainsi que les 2 droites ajus-

tées y' = ax + b et § =cx + d

Cas particulier :

Effectuer les mémes calculs que précédemment sur les couples de
X Yy o
valeurs (gi gi), tracer le graphe de ces couples de valeurs ainsi que
R N . N . ,
les droites ajustées a ces données d'apres les moindres carrés et les

moindres distances.

4.7 - Cas d'une relation (modéle) non linéaire

Lorsque la fonction y = f(x, a, b, ¢, d, ...) que l'on veut ajus-
ter d'aprés n couples de valeurs mesurées (Xi, yi), n'est pas linéaire ou
linéarisable par une transformation simple, on peut encore utiliser la

méthode des moindres carrés.’
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Si l'on connalt une valeur approchée des coefficients a, b, c, d

que l'on note a', b', c¢', 4!
a=a"+h, b=b +k, c=c'"+1, d=4'+ m,

en développant en série de Taylor, et en se limitant au premier terme, on

peut écrire :

£(x,a,b,c,d) v f(x,a',b',c',d") +(3E) n + (D) 'k 4+ (BEy'1 4 (BE)
© - &) br e (s @De

si on note FA = f(x,a,b,c,d) - fx,a',b',c',d') =y - f(x,a',b',c',d")

det (ﬁgé' la valeur de la dérivée partielle du premier ordre

de f dans laquelle on remplace chaque paramétre par sa va-

| leur approchée,

on calculera les coefficients h, k, 1, m par la méthode des moindres carrés

soit :

n
N _ o
(:) Minimum deif1 Ai (n Zi1 + k Zi2 + 1 2= + m Zi4)

!
en notant Z., la valeur de (Qi) pour x = x, et etc.
i1 da 1

Exemple :

Ajuster y = a ébx +c EdX

connaissant n couples de valeurs (yi, Xi) avec i =1 & n.

L'expression de la fonction,connaissant une valeur approchée des
parametres est :
. , =b'x , =d'x
y' =a' e +c'e

Calcul des dérivées partielles :

1 <1’ 1 _b! 1 -3 -4
(%;L) =5 (-g-’%)=-a'x' I (%%) =87 (%%k-c'x'edx
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on obtient alors les valeurs des corrections h, k, 1, m en cherchant le

minimum de :

X, ,-d X 'x, ¥, -d'x.
) [(yi i TP B Y E'F skax P o138 4o x
i=1

les valeurs que l'on obtient ainsi permettent de calculer une nouvelle valeur

approchée de chaque parametre :
a" = a' + h, P =b'+k, ¢c"=¢'"+1, 4" =4" + m,

puis l'on réitere le processus de calcul en (:) en recherchant des accroisse-

ments hq, k 11, m, : a" + hW’ b" + k1, c" + 11, d' + m, .

1’ 1 1

Remarque : il serait préférable, avant d'appliquer la méthode des moindres
carrés, d'orthogonaliser les variables :
Zy. = e-b'Xi Z.. =a'x -b'xj 7. = -d'x; Z,. = 'X'o_d'xi
14 , oy = e , .= e » Ly =cixe ,
qui sont fortement corrélées, par une analyse en composantes principales
en ne conservant que les 2 premiéres composantes pour les calculs

(cf. chapitre VI).

_d'X.]2
e i



V - LES LIAISONS STOCHASTIQUES

5.1 -~ La corrélation simple

La notion de corrélation est assez intuitive. On dispose de n cou-
ples d'observations numériques caractérisant deux phénoménes, par exemple
les précipitations cumuldes d'hiver (NOV-MARS) P?1 = X sur le bassin de la
Romanche et les &coulements de printemps—été (AVR-AOQU) Ef = Y au Chambon.
Pour étudier le degré et le type d'association entre ces 2 séries d'évenements
(Xi, Yi); 1'idée la plus simple consiste & porter sur graphique & axes carté-

siens les n points représentatifs de chaque année.

On observe une image de points ayant la forme d'une ellipse plus
ou moins aplatie. Il s'agit alors de condenser cette information en quelque
chose de plus maniable, dans le cas présent une relation lindaire entre X et
Y:Y=aX+b+ e, onveut en effet calculer Y en fonction de X. On estimera
les coefficients a et b d'aprés 1'échantillon des n couples d'observations,
selon les conditions que l'on impose & € qui est 1'écart (positif, négatif

ou nul) entre la relation calculde Y' = aX + b et le phénomene observé Y.

5.1.1 = Calcul des coefficients de régression a et b

Notons X,, ¥, les précipitation et écoulement relatifs & la i°™¢

annde d'observation (i =1, ..., n) et N 1'écart entre la valeur observée
Yi et la valeur Yi calculée par la relation lindaire. On imagine bien que la

droite, image de cette relation, passera par le centre de gravité ou bary-

- n - n
centre du nuage de points, défini par ¥ = ! Z Y, et X = 1 zZ X., mais il
ni=1 1 ni= "1
faut fixer une condition aux écarts €, ¢
n s n
on a choisi de minimiser Z €., soit encore E = I (Y. - aX, - b) = minimum.
i=1 1 i=1 1 1
On retrouve ici le principe des moindres carrés.
Cette condition se traduit par :
3E =0
&b Les dérivées partielles du premier ordre de la fonction
SE - o E, par rapport aux inconnues a et b, sont nulles

da



-23(Y. -aX -b)=0
. 1 1
soit

® O

-23 (Y. -aXx. -b)X =0
1 1 1

(i) et (:) signifient respectivement :

n
z g, = 0 , la moyenne des écarts est nulle et la droite
i=1
passe par le barycentre ;
n
P si Xi =0 , les vecteurs € et X (dans 1l'espace & n dimen-—
i=1

sions) sont orthogonaux et il y a indépendance

lindaire entre X et €.

Au lieu de résoudre le systéme de 2 équations & 2 inconnues (:)
et (:), une solution élégante consiste & faire un changement d'origine, en
centrant les variables, soit y;, =¥, -7 et x, =X; - X.

Ia condition des moindres carrés conduit & résoudre alors :

n
- 2 pind - - -0 -
z (yi a Xi) minimum, SOltij; (yi a xi) x, =0 ;
ZX. V.,
on obtient alors : 8 = —t
z Xi2

5.1.2 - Définition du coefficient de corrélation linéaire

, Y4 24 .t
Considérons la représentation du . ' 5 T
us o i 'j;""" + N
nuzge de points (Xi, Yi), et partageons le Viloomome el T
N \ + + +
plan en 4 quadrants a l'aide des paralleles + |+ & 4.
- - Vb __* _+,_F ;
aux axes d'abscisse X et d'ordonnée Y. Tout 7 ’;T;T T
+ ta + :
point M (de coordonnées Xi’ Yi) est défini N ++l :
. 7 - 7 Ty :
par les 2 écarts X, = Xi - X et v, = Yi - Y. - . | :
A —
° 2 X, x
Dans le quadrant I , le produit %7y > 0
" " 1T, " Xj_ yj_< 0
1" " n
I1I, Xi v >0

" " v, " Xi yj_ < 0



La quantité % 1%1 XYy caractérise l'association entre X et Y.
Si cette quantité est positive, la plupart des points sont dans les qua-
drants I et III, si elle est négative les points sont au contraire plus nom-
breux dans les quadrants II et IV, et lorsque les points sont répartis indif-
féremment dans les 4 quadrants, la quantité est voisine de 0. On appelle

1
covariance entre X et ¥ la valeur de a Zx ;-
i

Pour rendre cette mesure sans dimension et lui affecter un inter-
valle de variation borné, on la norme par le produit des écarts types de X
et ¥, et 1'on obtient alors 1l'expression du coefficient de corrélation liné-

aire r entre X et Y :

- 1€ r g1, i1 y a liaison fonctionnelle entre X et ¥ si r = + 1.

On voit immédiatement que le coefficient angulaire de la relation

linéaire entre X et Y peut se calculer d'aprés :

X, V. S S
a:-.&: I‘_l = I‘,.S,Y_;
Zx,® S, X

5.1.3 = Analyse des variances

Par définition nous avons écrit v = yi + ei avec yi =a x5 en

effectuant la somme des n carrés on obtient :

n n n n
2 - 12 2 1
.Z v;® o= .Z yi®+ .2 €%+ 2 .Z vi g
i=1 i=1 i=1 i=1
or Tyl e =a e xz, =0d'apres la condition 2)
i i i7i
toY - 2 _ 12 2 12
d'ou : z v %= z yiz+ z € 3)
Sy s
. 1 1 1 é
soit - 2y.2==-2y!2+=-2c¢€.2
n i n i n i @
34

2 - 2 2 _ 2 2
5,2=5,2+52=572+5,



C'est le

théortme de Pythagore, il y a orthogonalité entre les vecteurs 8,

et S, (dans 1'espace & n dimensions).

est la variance de la distribution libre des y ou Y,

SZ
y
812 est la variance due a la dépendance linéaire de y en x ou Y en X
ou la variance de Y expliquée par X,
822 est la variance résiduelle ou non expliquée par la relation
linéaire entre X et Y.
Divisons 1'expression C@ par 2 yiz, on obtient :
Zy!? 2
yl =1_Zsi
2 2
25 2y,
a? 2 x. ze.?
or Z2y!?2=a273%x2, d'ou - L
i 2 2
z i Zy_i
Ze,? S 2 g 2
soit rz2=1 - . _ 4 __e = @
Zy,°® S 2 S ? =
+ y y
Le carré du coefficient de corrélation représente la réduction
relative de dispersion des y ou Y, obtenue en utilisant la relation lindéaire
entre X et Y.

Exemple de la Romanche au Chambon, r? #/ .84 signifie que 84 % de la disper-

sion des

des précipitations d'hiver X = P3

écoulements de printemps-été Y = Ei est imputable & la variabilité

oy dont Eﬁ dépend linéairement.

On obtient ainsi 1l'écart type du résidu € :

c 82=\/1—I‘2 SY

S =

La relation (4) fournit également une interprétation géométrique

du coefficient de corrélation avec la figure ci-dessus :

S
1

P = =
SY

cos @



Remarque :

Nous avons raisonné jusqu'ici sur des valeurs observées, le raisonnement
serait parfait si 1l'on disposait d'un nombre n trés grand ou infini (de
1'ensemble de tous les couples Xi, Yi) mais dans la réalité on ne dispose que
d'un ou plusieurs échantillons limités en taille de valeurs observables
(20« n < 40), par conséquent les paramdtres de la relation Y' =a X + b que
1'on aura calculé sur chacun de ces échantillons sont des estimations des
vraies valeurs (inconnues) de la relation ¥' =a X + B . A et B sont des
variables aldéatoires d'espérance mathématique a et respectivement dont on
obtient une ou plusieurs réalisations a et b. On doit tenir compte du nombre
de degrés de liberté dont on dispose pour les calculs, dans la relation d'ana-

lyse de la variance :

2 2 2 -T2 =
Z2y,2=2y' 2+ Z¢g? ou Z(Yi )2 = (¢

- 7)2 _ 2
: )2 + = (Y Yi)

1

i i

- Pour la variance due & la liaison lindaire 812 il suffit d'un seul Yi pour
déterminer les (n-1) autres, T' = T étant fixée, d'ol v, =1 degré de

liberté.

- Pour la variance résiduelle S,2, la détermination de Yi pris comme origine

des différences Yi - Yi nécessite deux relations, une pour déterminer Y

ou b et une pour déterminer a, d'ou v, = (n-2) degrés de liberté.

Résumons ces résultats dans le tableau suivant :

Source Degrés
de Somme des carrés de Variance
variation liberté

B - - r2 3 (Y. -7)2
liaison lindaire Z(Y; -T)2=r23(vy-7)? 1 ?

(1-r2) 2(r, )2

n-2

résiduelle Z(Yi - Yi')z = (1-r2) 2(y -Y)2 |n-2

-T2 - =
totale Z(Yi T) n-1 {1 Z(Yi -Y)2

(La propriété d'additivité ne subsiste plus pour les variances).



5.1.4 — Tests sur les coefficients de régression

On démontre que les estimations a, b des vrais coefficients incon-
nus aetp , et obtenues par la méthode des moindres carrés sont fournies par

des estimateurs A et B sans biais :

E(A) =a et E(B) =8
On cherche donc & comparer l'écart entre a et a, puis b et / ; on va calcu-
ler la variance des estimateurs A et B (dont a et b sont une réalisation

calculée sur 1'échantillon des n valeurs).

On démontre que :

z (Y, -1!)2
-v(a) =s_2. e =— s
€ T (X, -=X)2 n-2 Z(X.-X)?
1 1 ng.?2
si 1'échantillon est important : V(A) # S i
X
. 1 X2
-V(B) =352 |- =
(B) e[n+zZX-X52 .

si n est grand : V(B) # —=-
n

La variable aléatoire :

t, = %:-‘l \/2 (Xi -X)2 suit une loi de Student & n-2 degrés de liberté

t, = §§:Ji VYT suit une loi de Student & (n-2) degrés de liberté
€

Pratiquement, lorsqu'on a obtenu une valeur a de A calculée sur un

dchantillon de taille n, on teste si cette valeur est significativement diffé-

rente de 0, c'est-a-dire si l'intervalle & p % centré sur a, soit a+t £ =
D :; 2 X

contient ou non la valeur 0. (Si n est grand :7%%37 est sensiblement gaussienne)

Remarque :
On peut utiliser le test de Fisher Snedecor pour vy = 1 deggé de liberté
et v, = n-2 degrés de liberté et qui teste si la quantité ¥ = 's'l? est signi-

2



ficativement plus grand que 1, c'est-a-dire si la variance due a la liaison

linédaire est significativement plus grande que la variance résiduelle.

5.1.5 = Test sur le coefficient de corrélation lindaire

En général le coefficient r est calculé sur un échantillon de n
couples d'observations, ce coefficient représente donc une estimation de
la vraie valeur p inconnue, et r a une distribution d'échantillonnage autour
de cette valeur. La fonction de répartition des valeurs de r est dissymétri-
que lorsque p # O et n'est pas d'un usage commode. On utilise alors une appro-
ximation en calculant la transformée de Fisher z = 2 log 1+§

velle variable z a un intervalle de variation de -@ & +eset suit sensible-
1

. Cette nou-

, indépendant de p,

ment une loi normale de moyenne p et d'écart type

‘ 1 A £ oot
on teste si l'écart entre z et 5 log %ig est significativement différent de

zéro. Dans la pratique. on teste si r est significativement différent de O,

s . 1 s ‘s .
c'est-a-dire si z = 5 log 1#T est & 1'extérieur de 1'intervalle + 2

o = au

seuil 5 % par exemple.

5.1.6 - Fonction de répartition gaussienne du couple (X, Y)

Si on considére des valeurs continues de X et Y et si l‘dn fait
1'hypothdse que le couple (X, Y) est distribué selon une loi normale & 2

dimensions, sa densité de répartition s'écrit :

ol Can oo ) By
® z = (1) = 1 7)o %y 5%

— 52
2 og Oy \[1- P

définie par cing parametres : = E(Y = E(X 2 = B(Y-m,)?, 0,2 = B(X-m,)?
inie par cing paremtres : my = B(Y), m = B(X), of = B(Y-n,)%, o = B(tm)?
p= E(Y-mY) (X—mX) et que l'on peut écrire sous la forme :

Y- -y . X-m, ) 1<X-EX)2
1 2(1- 2)( ) (X) 1 2 %

@D Z = e . m— O
7 \[2n(1- p2) % 27




L'expression (:) représente une surface de Gauss (chapeau de gendar-

me) dans 1l'espace & 3 dimensions Z, X, Y.

Pour X constant, c'est-a-dire en effectuant des coupes de cette
surface par des plans verticaux d'abscisse X, on obtient dans ces plans des
courbes de Gauss (d'aprés 1'expression @D ) qui se projettent sur le plan

norizontal (X, Y) selon une droite d'équation :
o
- - X
Gmnp e o) o

on reconnait 1'équation de la droite de régression de Y en fonction de X
obtenue précédemment. L'écart type 1ié de cette corrélation est o = Vﬁ:ﬁa Oy
a comparer avec S€ lorsque p= r coefficient de corrélation linéaire entre X

et Y. Les sections de la surface {5} par des plans horizontaux sont des ellip-
ses homothétiqugs e(X, Y) = d2 dont la forme dépend de p. La droite Y =

ny +,;(X - mX) Ez n'est autre que le diamétre conjugué de la direction OY
par rapport a ceS ellipses. On obtiendrait de méme le diamétre conjugué de

a
la direction OX sour la forme X = oy +,7(Y - mY) ;& .
Y

On dit que ces ellipses sont équiprobables, d'égale densité des
variables X et Y : on a une densité plus ou moins élevée de points & 1'inté-

rieur de ces ellipses suivant les valeurs de d.
Pour p = 0, on obtient des cercles, la surface est de révolution,

et, pour p= 1 on obtient une droite : la relation linéaire entre X et Y est

fonctionnelle.

5.1.7 — Applications de la corrélation simple

on peut

D'apres les 29 couples de valeurs observées (Ei, P?W)

calculer :

- 1'équation de régression Ei = .85 P?1 + 341 + ¢,
- le coefficient de corrélation lindéaire r #/.92,

- 1'écart type 1lié Se = SL =67



- aprés avoir étudié la distribution empirique des €5s gaussienne dans
ce cas, on peut calculer chaque année au ler avril une prévision
d'écoulement, c'est-a-dire un intervalle qui a 8 chances sur 10 de
contenir 1'écoulement de 1'été d'apres les pluies de l'hiver passé :

8 _ 3
ES = .85 P11

. + 341 +1.28 (67)

On veut comparer deux séries X et Y pour lesquelles on a n réali-
sations simultanées (exemple de la Romanche). On trace la ligne d'écarts

k
cumulés _Z1 (Yi - Yi) (pour k =1 & n) en fonction de k ou en fonction de
1=

k

Z (Yi + Yi). Cela permet de déceler les séquences des valeurs systémati-
1=

quement au-dessus ou en dessous de la droite de régression, donc des modifi-

cations de conditions de mesures.

Ainsi, pour la Romanche au Chambon, il semble y avoir une hétéro-
généité de faible importance en 1947-49. Bien entendu plus r sera voisin de
1, plus on mettra en évidence les faibles hétérogénéités et par conséquent
celles qui sont importantes (cf. méthode de contrbdle mise au point par

M. BOIS & 1'I.N.P.G.).

Ayant calculé, par exemple, la corrélation entre les précipitations
annuelles observées a Villard-de-Lans et Engins sur la période 1920-1967
E =1.0%33 V - 18, on peut reconstituer la précipitation E & Engins en 1968
(1e pluviométre étant hors service) affectée d'une plage d'incertitude pro-
portionnelle & 1'écart type 1ié de la corrélation (oL = 106) connaissant la

précipitation V a Villard-de-Lans V = 1470.

5.2 - La corrélation double

I1 s'agit d'une extension de la notion de corrélation simple. On
dispose de n observations, simultanément sur 3 variables Y, X, Z (Yi, Xi’ Zi).
X et Z sont les variables explicatives de Y, c'est-a-dire que 1'on cherche

a établir une relation multilindaire de la forme :
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Y=ax + bz +c+ ¢

Le résidu e représente 1l'écart entre 1'équation ajustée Y' = ax + bz + ¢

et la valeur observée Y.

En d'autres termes, dans l'espace a trois dimensions (Y, X, Z) on
va chercher & faire passer un plan qui s'ajuste au mieux au nuage des n
points observations (Yi, Xi’ Zi). On utilisera pour cela la méthode des
moindres carrds qui consiste & minimiser la somme des carrés des écarts
entre valeurs ajustées par le plan et valeurs observées (ei = Yi - Yi)
parallélement & la direction OY, on déterminera ainsi les coefficients de

régression a, b et c.

5.2.1 - Calcul des coefficients de régression

Satisfaire & la condition :
(Y. -aX -b2Z -c)2=2c¢ ?=mninimnm
i i i i

revient & résoudre le systéme d'équations suivant :

[ 5 = ei2
5a 0
d Z ei2
¢ TS 0
d ei2
L S c ©

On doit donc résoudre le systéme :

©

23x, (Y.-aX -b2Z =-c)
1 1 1 1

®)

237 (Y, ~aX -b2 -c)
1 1 1 1

23 (Y. -aX -b3 -c)
1 1 1

©)
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On remarquera que les deux premieres relations établissent 1'orthogonalité,
donc 1'indépendance lindaire au sens artistique, du résidu et de chacune

des variables explicatives puisque :

ZX. e =0 et 272, e =0

De plus, la relation (:) aprés division par n (nombre d'observations) de-

vient :

c=Y-aX-b2 ’ (1e plan passe par le barycentre du
nuage

?, E,.Z étant les moyennes arithmétiques respectivement des Yi, Xi’ Zi’ on

obtient facilement c connaissant a et b.

Pour la commodité des calculs, nous travaillerons en variables

centrées réduites, soit :

la condition des moindres carrés

z (yi -ax - b zi)2 = minimum

consiste & résoudre le systéme & deux équations :

1
(@]

z Xi (yi - a Xi -b zi)

[0}
(@]

z z, (yi - a X - b Zi)

2y. x. 22,2-2 v 24 Z X, 2z,

soit a = i d L L - 4
£x.2 2z2-(2x, 2.)2 <:>
i i i

z v oz Z Xiz -2z vy % z X 24 C)
b =

$x.23z.2-(2x, z,)2
i i i7i
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Notons :
- le coefficient de corrélation totale ou simple entre y et x
2
r? = (2= v;)
1 2 2
(z=2) (Zy,2)

- T, le coefficient de corrélation totale entre y et z
2
s - (22 v,)
2 2
(2.2 (23,2

- p le coefficient de corrélation totale entre x et z
P 2
_ (2 X Zi)
2 2
(zz2) (222

On peut écrire 1l'expression (:) ainsi (en supprimant 1l'indice i pour simpli-

fier l'écyiturg) :

Zxy Zz? Zyz I Xz
2 x?2 Zy? 22?2 T Tk 3 y2 Z g2
a =
T x2 I g2 (2 xz)2
T x?2 Ty? Zz? Zx? Zy? Zz?
sachant que :
- 2
n Sy =2 5
nsS =2x.2
X i
ns =12z?2
z i
on obtient :
r1 _ r2P
ns_S S_ S
a= > S
1 _ p?
ns_ 2 nsS 2
y
_ Ty = TP S
— 2
1 p SX
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on trouverait de méme :

1 -p2 3

Les coefficients de régression s'obtiennent directement & l'aide des coeffi-

cients de corrélation totale Tyy Tos ainsi que des écarts types Sx’ Sz’ Sy.

5.2.2 - Calcul du coefficient de corrélation multiple

la qualité de l'ajustement effectud & 1l'aide de la relation multi-
linéaire précédente , c'est-a-dire la proximité entre valeurs calculées Yi
et valeurs observées Yi, peut &tre caractérisée par un coefficient sans dimen-
sion ainsi défini (coefficient de détermination multiple)

Te 2

_ i
R2 =1 - 5T 2 ZD
i

Lorsque la relation entre Y et Z est fonctionnelle, la dispersion
est nulle (Z Ei2 = O) le coefficient R2 = 1; dans le cas contraire lorsqu'il
n'y a aucune relation linéaire entre Y et Te couple (z, X) 1a dispersion

naturelle des 5 n'est pas réduite et Z siz =2 yi2 soit R2 = 0.

La corrélation multiple entre la variable dépendante Y et les va-
riables explicatives sera d'autant plus élevée que R? sera voisin de 1. R
est également le coefficient de corrélation multiple entre valeurs calculées

et valeurs observées

On peut établir facilement & l'aide de (§) la relation suivante
entre le carré du coefficient de corrélation multiple et les coefficients

de corrélation totale :



2 2 _
e - r1 + r2 2pr1 T

1 - p2

2

On remarque en particulier que lorsqu'il n'y a pas de corrélation

entre X et Z (;7= 0) : R2 = r12 + r22

5.2.3 - Calcul de la variance liée ou résiduelle

Notons § 1'écart type des écarts résiduels, d'apres C) on peut

écrire :
Sz
=1 - _£E_
R2 = B
v
soit : S 2= (1 - R2) 5.2
€ ¥y

la variance résiduelle ou variance liée représente la part de va-
riance totale de Y inexpliquée par la relation multilinéaire entre Y, X et

Z : elle sera d'autant plus faible que R? sera voisin de 1.

2 1 2 12 1 2
y;2 =2 (y.l + si) =2yj?+22Zy] e +2Te

. _ _ .
or Iyl =2 (a X, + D zi) e, =0 d'apres () et @

2 - 12 2

donc Z y;® = Z v + Z €
Sy g
soit S S.2=5_,2+8_2
y €

v o

S,
Y
La variance totale se décompose en variance expliquée par la rela-

tion lindaire et variance non expliquée ou résiduelle.

Pour estimer les variances réelles, il faut tenir compte du nom-

bre de degrés de liberté, ainsi :

- pour la variance lide & la relation linéaire f% % (Yi - Y)2 on dis-

pose de 2 degrés de liberté, Y étant domné il suffit de 2 points pour défi-

nir le plan, v, = 2
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- pour la variance résiduelle S€2 = E%' z (Yi - Yi)z on dispose de
vy = n-3 degrés de liberté (3 relations pour déterminer les 3 coefficients);

- pour la variance globale Sy2 on dispose de n-1 degrés de liberté (une

relation pour déterminer ?).
[ ., _R?

= _ )2
syp=5 (v)-7)

2 -1 -R? _ )2
{8, == Z(Yi Y)

2 1 _7)2
SY n-1 Z (Yi Y)

5.2.4 - Calcul des coefficients de corrélation partielle

Les coefficients de corrélation totale T, et r, ne sont pas de bons

témoins de la liaison réelle qui existe respectivement entre Y et X, Y et Z.

On a donc défini un coefficient de corrélation partielle qui mesure
l'intensité de la relation entre Y et X, par exemple, lorsqu'on élimine 1'in-
fluence de Z sur chacune de ces variables, on le notera ryx Z; de méme le

’
coefficient de corrélation partielle entre Y et Z sera note ;yz %
’
Essayons tout d'abord d'illustrer cette notion de corrélation par-

tielle a l'aide d'une représentation graphique.

Schématisons 1l'information totale concernant le phénoméne Y par
l'aire D que l'on prend égale & 1. La part Y expliquée par les phénoménes
X et Z est définie par toute l'aire hachurée soit R2. La part inexpliquéde,
zone en blanc, est donc mesurée par (1 - R2).
La corrélation totale entre Y et X est défi-

nie par l'aire hachurée horizontalement soit

r12 (II); la corrélation totale entre Y et Z
est définie par l'aire hachurée verticalement

(III) soit r22.
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Les corrélations peuvent alors &tre définies par :

R2 - r_2
2
ryX s = —T—_——g? coefficient proportionnel aux aires I + II
’ - T
2 R? - r12
ryz r STz coefficient proportionnel aux aires I + III.
’ - T

L'aire I caractérise la dépendance entre X et Z (elle est nulle

dans le cas d'indépendance).

On remarquera que lorsqu'il y a indépendance entre X et Z, R? =

r12 + r22 les corrélations partielles sont différentes des corrélations

totales, en effet :

2 r’]z
r T ce——
JX, 2 1 - r22
2
- - 2
yz, X 1 - 2

1

Le coefficient de corrélation partielle a été défini comme coeffi-
cient de corrélation entre la variable dépendante et l'une des variables
explicatives, Y et X par exemple, lorsqu'on enléve & chacune d'elles la

part due & 1l'influence de la troisiéme, Z.

I1 faudra donc calculer les écarts résiduels ¢ et & & 1'aide des

relations linéaires ajustées par les moindres carrés :

Y=a1 Za!—/}.,1+§1

X = ¢ 7 + d1 + 61

Le coefficient de corrélation partielle entre Y et X sera défini
ainsi :
i .
61
= 2 51 1

r
Jx, 2 i, i,
\/z SCERYE
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De méme on obtiendra le coefficient de corrélation partielle entre

Y et Z en calculant :

[
1l

RPN PR P
c2 X + d2 + 62

En développant ces relations, on obtient les expressions suivantes,

en fonction des coefficients de corrélation totale :

r -

p

- - 2~ 5
zZ, X
: R

5.2.5 - Signification géométrique des coefficients de corrélation

simple, partielle et multiple

Dans l'espace & n dimensions, on définit les vecteurs OM, 0P, 0Q,
d'origine O (centre de gravité des observations, ou point le coordonnées i,

E, ?) et dont les extrémités M, P, Q ont pour coordonnées respectivement

(X1’X2’ ey Xn>’ (Z/I’ AR Zn)7 (.V»]y ey yn>'
P
Le cosinus de l'angle des vecteurs OM et 0Q
n'est autre que le coefficient de corrélation simple
ou totale entre x et y : cos 9o=r,, de méme le cosi- w d

,
nus de l'angle des vecteurs OP et SQ est le coeffi-
cient de corrélation totale entre z et y : cos Y= o
enfin le cosinus de l'angle des vecteurs OP et 0Q est
le coefficient de corrélation totale entre x et z.

(on rappelle que OM2 =n S_2, OP2 =nS_2, 0Q2 = n S_2).
x z v

Le coefficient de corrélation partielle entre
v et x n'est autre que le cosinus de l'angle des projec-
tiorsdes vecteurs 0Q et OM sur le plan orthogonal a OP

. . - 78N
soit : ryx,z = Ccos « (Q1 M' est /7a MWM)
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De méme le coefficient de corrélation
partielle entre y et z est le cosinus de 1l'angle
des projections des vecteurs 0Q et OP sur le

) ] . - 1
plan orthogonal a OM soit : ryz,x = cosf (Q2P
est /& P PZ).

Le coefficient de corrélation multiple
est le cosinus de l'angle entre la projection
orthogonale de 0Q sur le plan MOP : R = cos w;
on voit immédiatement que si 0Q est orthogonal
4 MOP, il n'y a pas de corrélation multilinéaire
entre y et x, 2, et que si 0Q est dans le plan MOP, ,

il y a liaison linéaire fonctionnelle entre y et x, z.

5.2.6 - Test sur les coefficients de la régression double

On démontre que l'espérance mathématique des coefficients de
régression a, b, ¢ calculés sur un échantillon de taille n, par la mé-

thode des moindres carrés, est :
B(a) =4, E(b) = B E(e) = C si A, By C

sont les valeurs théoriques inconnues.

Les coefficients estimés d'apres n observations ont une dispersion

d'échantillonnage et on démontre que leur écart type respectif est :

S SY
pour c S =& = V1 - R2
C n

pour a s = \f=R2 I

S
pour b Sb ] 1__:_112. RS
- z o3

généralement on teste si les variables de Student tc =L, t = gL, tb =D

sont significativement différentes de O au seuil a% (

avec n-3 degrés de liberté.



vV - 19

Pour tester si les différents coefficients de corrélation par-

tielle sont significativement différents de O, on peut appliquer la trans-
i

formée de Fisher, mais avec un écart type égal a
\n-4

Le test sur le coefficient de détermin%tion multiple R2? revient

4 tester si le rapport de Fisher Snedecor F = gl? avec v, = 2 degrés de

liberté et v, = n-3 degrés de liberté est sign%ficativement différent de
1 au seuil a%. C'est un test sur les variances, variance expliquée par la
relation multilindaire comparée & la variance résiduelle, en se reportant
au paragraphe 5.2.3 on calcule F d'apres la relation :

_ (n-3)R2

2 (1-R?

Jemarque
L'analyse des variances permet d'obtenir une estimation R'? sans biais

du coefficient de détermination multiple R2?, en effet :

Exemples de corrélation simple, double, triple entre les écoulements du Drac

au Sautet E7 (variable principale) et les précipitations P? et écoulements

3 4 7 0
E1O d'hiver, les précipitations 4'été P4.
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PRBVISION d'APPORTS de la RUMANCHE au CHAMBON

8
4

1
X T43.3
8 166.2

CLE 1

667.5467
694,.5989
886.5004
572.8640
576 .2455
536.5126
827.3238
6528,6592
796 ,0446
702.2073
%79.8721
784.,2093
19019.2253
8§16.,3333
731.7957
576.2u455
1118.9803
614,2877
504,9885
763.9202
712.3519
900.8719
756.3117
904,2534
844,2314
720.8057
588,0809
976.1109
754.6210
MX
743.3104

3
P3
2

475.8
180.5

<8454
341.2295

CLE 2

742,0000
781.0000
972.0000
516,0000
621,0000
518.,0000
344,0000
741,0000
879.0000
706.0000
459.0000
715,0000
1035.0000
866,.0000
700,0000
555.0000
1017,0000
578,0000
537.0000
762,0000
631.0000
823,0000
801,0000
841,0000
931.0000
587.0000
599.0000
1053,0000
7u46.0000
MY
743.3103
8y
1.0000
LAMBDA
<4039

T BR
12,0 092

SL= 570125“

CLE 3

74.4533
86.4011
85.4996
b4 ,7545
-18.5126
16.6762
112.3408
82.9554
3.7927
"69:2093
15.7747
49,6662
31,7957
"21.2“55
=-101,9803
-36.2877
-67.9885
°1c9202
-81,3519
-77.8719
Lby,6883
-63.2534
86,7686
-133.,8057
10.9191
76.8891
-8.6210
SX SY
152,.5842 166.2133
R2 R
. 8369 .91438
CONF 80 SYX
85.9205 67.1254

E.D. F.- DIVISION TECHNIQUE GENERALE
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Le DRAC

au

SAUTET

précipitations cumulées du ler octobre au 31 mars (mm)
écoulement calculé en mm du ler octobre au 31 mars
écoulement calculé en mm du ler avril au 31 juillet

précipitations cumuldes du ler avril au 31 juillet

1941-42
43
44
45
46
47
48
49
50

1965-66

68
69
70
7
72
3
T4
e
76
7

324
611
949
819
604
415
967
517
367
565
610
866
847
838
650
744
385

748
618
604
630
732
724
469
476
474
451

359
989

207
291
457
517
428
293
511
281
215
247
416
431
749
436
193
516
185

506
368
280
384
348
322
175
285
229
232
231
597

263
400
270
395
514

541

538
251
370
864
551
358
369
729
475
363
536
439
651
504
582
695
413
352

633
434
518
583
743
695
453
463
394
512
241
852

200
307

243
232
350
277
497
255
231

432
307
243
316
334
416
320
378
305
296
351

230
381

224
275

263
239
338
359
317
440
338
483
258
355
164
571

V 24
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DEFINITION DES SYMBOLES FIGURANT DANS LA SORTIE
EN PROGRAMME REMULOB

M moyenne arithmétique des n observations pour chague variable
(1, 2, 3, ...)
S écart type des n observations pour -do-

demi-matrice de corrélation totale entre tous les couples de variables

Rp coefficient de corrélation partielle entre la variable principale
et chacune des variables explicatives

RT coefficient de corrélation totale entre chaque variable explica-

tive et la variable principale

B coefficient de régression partielle
T t de student, soit B
S
B
S z 7
beta soit B . gz., Sy étant 1l'écart type de la variable principale et
y

SY 1l'écart type de chaque variable explicative

A terme constant de la relation multilinéaire

R? coefficient de détermination multiple

R coefficient de corrélation multiple

lambda A= V1 - R?

SL écart type du résidu ou écart type 1lié SL = A Sy

F test de Fisher Snedecor : F = (n-K) B2 , (K étant le nom-

(x-1) (1-Rr2)
bre total de variables utilisées)

Remarque : lorsque R2 n'est pas spécifié coefficient brut, il s'agit de

l'estimation sans biais R'?2 = (n-1) B2 % (k-1)
n_




REMULOR 0 (MAL 1972)

& VARIABLES
24 ORSERVATIONS

40
1

617.0
199.1

@ X

326.0
947.0

x =0

1.0000
n.7785
N, 7956
0.1657

S wn -

185.0
769.0

1.0000
0,3676
0.0017

LE ?26/11/746 A 1%/25/59

1.009
0.587

NOMBRE DE VARIABLES UTTLISEES :

ORDRE DE CES
3 1

COEFF BRUTS

COEFF.CORRIGES R2

VARIABLES

RP

0.7956

R2 0.5330

0.616%

Won

RT

0.7956

NOMBRE DE VARTABLES UTILISEES :

ORDRE OE CES
3 1

CCEFF.BRUTS

COEFF.CORRIGES 2

3
1
2

VARTABLES
P4

RP

0.8920
-0.71466

R2 < 00,8204
= 0.8033

RT

0.7956
0.34676

?

NOMBRE DE VAPTABLFS UTILISEES :
QRDRE DE CES VAR[ARLES
3

1

COFFF,RENTS

P -8 e

2 b

ap

0.9674
=0.RR20
0.9003

R?2 = N,9650

COEFF,.CORRIGES R2 = 0,96199

eT

N.7956
0,376
N.S479

o =
R =

0
9 1

2 i SE

A= 8
0.7956
0.7350

3 i SE

A = 9

n.9057
0.8963

.0nno

UILS DPELIMINATION =

0.6406
0.7516

LAMBDA
LAM3DA

non

6.2

0.6058
0.6195

UILS DP'ELIMINATION :

1.0729
0.7728

2.6735

LANSDA
LAMADA

0.46233
N.4635

b 7 SEUILS DELIMINATION

A = =12

N, 9828
0.9402

0.9401%
0.4296
n.8173%

R.76A5

LAYADA
LAMADA

N, 1744
0,172

GLOBALE

St
St

non

GLOBALE

RFTA

1.33
-0.69

St

<y

won

G OBALE

HETA

1.17
=056
0.40

LA
L

wou

= 0.100

93,2382
95.3337

= 0.100

65,2255
68,2409

= 0.100

28.TR61
50 L3RS

Y. = -

; PRNGRESSTVE = 0.500

1.25eS¢L
1.28+%SL

119.3449
122.0272

: PROGRESSIVF = H.s507

1.28eSL
1.28e5L

now

A3.LRB7
87,3740

: PANGRESSIVE = 0,500

r.74000
1.23s5L

Th, 4214
38.U61%

£

3

13
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37.9391

67,7560

TR

LA TA
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1 DRRC AU SAUTET:P10/3,E4/7

Y= 0.839X% +81.5 |

7
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Le DRAC au SAUTET

- .-+ Ponetions de répartiticn de 1'écart résiduel -

g = - (G E )

e =gl 3 5
L =El - (L1 - 7T, - %)

p
G-t - (5 25, - 63 sf° .2 pz - 129)
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TABLE 4
FRACTILES t, de la LOI de STUDENT .

v 30

0,50 | 0,40 | 0,30 0,20 0,10} 0,05 | 0,025 | 0,010 | 0,005 | 0,001 0,0005 | Q=1-P
y P 0,50 | 0,60} 0,70 | 0,80 | 0,90 | 0,95 | 0,975 | 0,990 | 0,995 | 0,999 0, 9995
1}0,000]0,325}0,727 1,376 {3,078 | 6,314 | 12,71 |31,82 |63,66 |318,3 638,6
21}0,000)0,289 0,617 |1,061 {1,886 {2,920 | 4,303 | 6,965| 9,925 22,33 31,60
3{0,000)0,277 | 0,584 | 0,978 { 1,638 | 2,353 | 3,182 | 4,541 5,841 | 10,22 12,94
410,000} 0,271 0,569 {0,941 | 1,533 2,132 | 2,776 | 3,747 4.604 7,173 8,610
5]0,000f 0,267 0,559 }0,920} 1,476 | 2,015 | 2,571 | 3,365 | 4,032 5,893 6,859
6§ 10,000)0,265)0,553 | C,906 (1,440 1,943 | 2,447 | 3,143 | 3,707 5,208 5,859
710,000 0,263} 0,549 | 0,896 | 1,415 {1,895 | 2,365 | 2,998 | 3,499 4,785 5,405
810,000 0,262 | 0,546 | 0,889 | 1,397 | 1,360 | 2,306 | 2,896 | 3,355 4,501 | * 5,041
910,000 0,261|0,5430,883({1,383|1,833| 2,262 | 2,821 3,250 4,297 4,781
10 | 0,000 | 0,260 0,542 | 0,879} 1,372 | 1,812 | 2,228 | 2,764 | 3,169 4,144 4, 587
11 {0,000 {0,260} 0,540 | 0,876 { 1,363 |1,796 | 2,201 | 2,718 | 3,106 4,025 4,437
12 {0,000} 0,259 | 0,539 { 0,873 | 1,356 | 1,782 | 2,179 | 2,681 3,085 3,930 4,318
13.|0,000} 0,259 | 0,538 | 0,870} 1,350 {1,771 | 2,160 | 2,650 | 3,012 3,852 4,221
14 {0,000} 0,258 { 0,537 | 0,868 | 1,345 | 1,761 | 2,145 | 2,624 | 2,977 3,787 4,140
15 | 0,000 {0,258 | 0,536 { 0,866 | 1,341 | 1,753 | 2,131 | 2,602 | 2,947 3,733 4,073
16 |o0,0c0} 0,258 | 0,535 | 0,865} 1,337 1,746 | 2,120 | 2,583 | 2,921 3,686 4,015
17 {0,000} 0,257 {0,534 | 0,863 (1,333 {1,740} 2,110} 2,567} 2,898 3,646 3,965
18 | 0,000} 90,257 | 0,534 | 0,862 | 1,330 {1,734 | 2,101 | 2,552 | 2,878 3,611 3,922
19 | 0,000} 0,257 { 0,533 {0,861 | 1,328 {1,729 | 2,093 { 2,539 2,861 3,579 3,883
200,000 0,257 {0,523 |0,860} 1,325 (1,725 | 2,086 | 2,528 | 2,845 3,552 3,850
21 {0,000} 0,257 0,532 |0,859}1,323 1,721 | 2,080 | 2,518 | 2,831 3,527 3,819
22 |0,000(0,256 {0,532 {0,858 1,321 | 1,717 | 2,074 | 2,503 | 2,819 3,505 3,792
23 {0,000(0,256 | 0,532 | 0,858 | 1,319 | 1,714 | 2,069 | 2,500 | 2,807 3,485 3, 767
24 | 0,000 0,256 | 0,531 | 0,857 {1,318 {1,711 | 2,064 | 2,492 | 2,797 3,467 3, 745
250,000 0,256 {0,531 |0,856 {1,316 {1,708 | 2,060 | 2,485 | 2,737 3,450 3,725
26 | 0,000 | 0,256 | 0,531 | 0,856 {1,315 |1,706 | 2,056 { 2,479 2,779 3,435 3,707
27 | 0,000 | 0,256 | 0,531 {0,855 1,314 | 1,703 | 2,052 | 2,473 | 2,771 3,421 | - 3,690
28 | 0,000 | 0,256 | 0,530 {0,855 {1,313 |1,701 | 2,048 | 2,467 | 2,763 3,408 3,674
29 | 0,000 | 0,256 | 0,530 | 0,854 | 1,311 {1,699 | 2,045 | 2,462 | 2,756 3,396 3,659
30 } 0,000 0,256 | 0,530 | 0,854 | 1,310 | 1,697 | 2,042 | 2,457 | 2,750 3,385 3,645
.40 | 0,000 } 0,255 | 0,529 {0,851 |1,303 1,684 | 2,021 | 2,423} 2,704 3, 307 3,551
60 {0,000} 0,254 | 0,527 | 0,843 {1,296 | 1,671 2,000 | 2,390 2,560 2,232 3,460
80 | 0,000 | 0,254 | 0,527 | 0,846 | 1,292 | 1,664 | 1,990} 2,374 | 2,639 3,195 3,415
100 | 0,000 | 0,254 { 0,526 | 0,845 | 1,290 | 1,660 | 1,984 | 2,365 | 2,628 3,174 3, 389
200 } 0,000 | 0,254 { 0,525 | 0,343 | 1,286 | 1,653 | 1,972 | 2,345 { 2,501 3,131 3,339
® 10,000]0,253 0,524 | 0,842 ]1,282 | 1,645 1,960 | 2,326 | 2,576 3,090 3,281 .

. TABLE 4
FRACTILES DE LLA LLOI DE t
(Loi de Student)

La loi de t (loi de Student)est définie par la probabilité élémentaire
1-(."_"'_1) , =2
1 2 12,72
v Ty, ()
2

Le parametre v est le nombre de degrés de liberté (d.d.1.).

La table donne les fractiles de la loi de t, c'est-i-direles valeurs tp
telles que Prlt < t‘,] = Ppour P 3 0,50 (t 3 0). Pour les valeurs de P < 0,50
(t <0), onat, = - ti,.

Lorsque v—=+ ©, la loi de Student tend vers la loi normale réduite :
la ligne v = @ donne les valeurs que l'on trouve dans la table 1.3 pour les
mémes valeurs de P, On peut considérer l'approximation normale comme va-
lable pour Vv > 100, et mé&me pratiquement pour VvV > 60,

Par exemple ‘
9 Pr(t <2,262) = 0,975 Prlt < - 2,262] = 0,025

pour V =
Pr{- 2,262 <t < 2,262] = 0,95
pour V = 140 Prl- 1,96 <t < 1;96] # 0,95



5.3 - La corrélation multiple

Nous généralisons a présent toutes les propriétés développées
dans le cas de la corrélation double, en considérant le traitement de 1'in-
formation hydrométéorologique destiné essentiellement & mettre au point des

"modeles" de prévision.

Et plutdt que d'exposer des méthodes de calcul (abondamment déve-
loppées dans la littérature mathématico-scolaire) dont le formalisme pour
certains, ou l'apparente simplicité pour d'autres, détourne trop souvent
l'attention au détriment de 1'intérét et des difficultés de l'application
pratique, nous essaierons de montrer, sur des cas concrets, quelles sont les
préoccupations du "tailleur" de prévision. En particulier les choix qu'il
est amené a faire lorsqu'il utilise le calcul automatique pour mettre au

point ses schémas de prévision.

En préambule, on ne peut qu'insister une nouvelle fois sur l'in-
dispensable qualité des données utilisées dans ces calculs. On peut établir
un modéle tres sophistiqué, si les données d'entrée sont mauvaises, la sor-
tie rendra caduque toute application. Il n'est pas exagéré d'affirmer que
dans bien des cas, la moitié du travail consiste & contrbler et critiquer
les séries de mesures (précipitations, débits, température) en s appuyant

sur des corrélations spatiales et temporelles.

Une erreur courante, mais grave, consiste & croire que le fait
d'effectuer un traitement des domnées par ordinateur suffit & leur déli-
vrer le "label de qualité" : on ne peut se faire une opinion qu'en associant

constamment les résultats numériques et graphigues.

5.3.1 = Généralités et définition des variables utilisées

L'écoulement entre deux instants t1 et t2 (l'intervalle de temps

entre t1 et t2 pourra étre de 24 h - 48 h - 7 jours - 1 mois - 5 mois - 1 an,

etc.) dépend de deux ensembles de facteurs



-~ ceux qui caractérisent 1l'état antérieur ou initial du bassin versant avant

1l'instant tq, sa mémoire ou inertie (I)

- ceux qui caractérisent les conditions météorologiques (P) régnant pendant

la période prévisionnelle (entre les instants t, et tz).

1
I1 ne peut &tre question de rechercher de liaison fonctionnelle

entre 1l'écoulement et les autres facteurs, pour deux raisons

on dispose seulement de quelques longues séries de mesures ponctuelles
de débits, précipitations et températures de 1'air, piézométres (pour le ni-
veau des nappes souterraines) observées en continu (diagrammes - cassettes)

ou discontinu (hauteurs, compteurs d'accumulation) ;

la complexité, l'interférence, la variabilité spatiale et temporelle
des facteurs conditionnant 1l'écoulement, rendent illusoire et arbitraire
une formulation mathématique directe en vraie grandeur des termes du bilan

d'écoulement.

La seule solution rationnelle et objective consiste & traiter ces
influences en valeur relative, et & les représenter par des indices ou té-
moins, dont on recherche, d'aprés les séries d'observations, la corrélation

avec 1l'écoulement a prévoir.

La structure de la relation la plus simple qu'on puisse imaginer

est un modéle multilinéaire, modele auquel se raméne toute relation si com-

pliquée soit-elle, si on néglige, dans une premiére étape des recherches,

les termes de second ordre :

On notera pour simplifier :

\

- Y la variable & expliquer (ou variable andogdne), définie également

comme prévisande ,

- Xj les variables explicatives (ou variables exogénes), définies comme

préviseurs.
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5.3.2 - Calcul des coefficients de régression multiple

On cherchera & définir un invariant, dans le cas présent une rela-

tion linéaire définie par p coefficients aj (o § Jg p), de telle sorte que :

@

c'est la

ficients

P 2
Yi -2 a.X. - ao
j=1 J

™M B

€i2 = Minimum

4
]

[ =

N

-
1

condition des moindres carrés qui va permettre de calculer les coef-

a..

En notation matricielle, si on note :

. le vecteur colonne des coefficients : a (p,1)
. la matrice des données centrées (Xi = Xi —‘f) S 4 (n,p)
le vecteur colonne des données 75 centrées (yi = Yi - Y) .S (n,1)
le vecteur colonne écarts résiduels e, : ¢ (n,1)
la relation multilinéaire s'écrit alors : y=xa + €

Chercher le minimum de E(a) = (y - xa)' (y - Xa), notant par '

1'opération matrice transposée, conduit a résoudre :

de p + 1

-1
a = (X' x) . x'y

En notation classique, résoudre (:) revient a résoudre le systeme

relations lindaires a p + 1 inconnues (ao, 8y ey ap) suivant :

—= 0 pour j=0,1, ..., p

ce qui revient & résoudre :

n
= i =1 2
i§1 in € 0 pour j ap (:)
T e, =0 pour j = O i (:)
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4

- la relation (3) signifie que la moyenne arithmétique des écarts résiduels

est nulle et que l'hyperplan Y'

gravité des observations (¥, 351, 5

33
. X))
D

- la relation @ signifie 1'indépendance linéaire, au sens statistique,

entre les vecteurs Xj et € (ils sont en effet orthogonaux).

Si 1'on effectue les calculs sur des variables centrées (in

in - Xj), le systime (2) et (3) se simplifie, on doit alors résoudre :
n
.Z xjiei=0 pour j =1 arp @
1:1
. 2
soit encore : a1 Z x11 +a2 Zxﬁ_ X2l+ + a th xpi=2x
................. ,
axzx.x4+ ................ +a Zx . = ZX_.
pi i pi pi
en résolvant les p systémes suivants :
r 2
cMZ)cw.l +"‘+CWpZX1iXpi= 1
(1) 41 szl Xyt +C1p ZXZi Xpi= 0
2
cMprl 11+ +c1pZXpl = 0
[ 2
c 2 X + . + C x,. x. = 0
pl 11 PP 11 Tpi
) %
2
c Zx + + C 2 x = 1
joll pi 11 PP pi
on montre que l'on obtient :
8y =2 (g %y +ogy Xy + +c1pxpi) T
8, = z (cp1 R TTETIr Ty * Cop Xpi> Vs

% a. X. + a, passe par le centre de
=1
9
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On peut d'ailleurs obtenir ces coefficients a partir de la matrice
des coefficients de corrélation totale, entre tous les couples possibles
(Xj’ Xk) et (Y, Xj), il suffira d'inverser cette matrice et de calculer le

rapport de certains de ses éléments.

Considérons le déterminant & p lignes et colonnes, des coefficients

de corrélation simple :

n® ligne 0 1 2 ... D
n® colonne
-
0 1 Ty v Ty v+ Ty v 1 rX y e rX ¥
1 2 1 o)
1| Toer 1 r, . T
X | oty L&, 1
2 oy == A=
2
P Ty 1 Ty 1
o D
‘ i . idme |, .
On note AK. le déterminant obtenu en supprimant la K ligne et
la jleme colonne (Os'K; Js p), 0 désigne la premiere ligne ou colonne des

coefficients de corrélation simple entre chaque variable explicative et la

variable principale. On trouve ainsi que :

JA . S, R
a,=a . =- (-1)" 21 _L (on tiend compte de la rgle
J J Aoo SX des signes)

5.3.3 - Calcul des coefficients de corrélation partielle

Le coefficient de corrélation partielle entre la variable princi-

pale et 1l'une des variables explicatives, Xj = X1 par exemple, est le coef-
ficient de corrélation entre les variables Y et X1 désinfluencées chacune
X

des autres variables explicatives X2, ey Ao

Soit : =Y -(a, X, +a, Xo+ ooo +a X+ a) les coefficients a
4 2z 53 PP ° et [ étant obtenus

0 X,- (ﬁ2 X, + T ﬁp Xp + ﬁo) par moindres carrés

1
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le coefficient de corrélation partielle entre Y et X1

n
3
r i=1 $15 014

YX, X X, X, ...X — s s
10 % A5y p \/zg. 20,
11 11

on peut l'obtenir par récurrence :

r - I T
. _ Y X1 Y X2 X1 X2
YX, X
1 2 1 - 1.2 1 - p. 2 X
% LIS
T - I I
; Y X1, X2 Y XB’ X2 X1 X3, X2
Y X1, X

X=
2773 1 -1 2 1 -r_ 2
\/ YXB,XZ \/ X, )(3,X2

mais c'est une méthode extrémement lourde.

On peut calculer ces coefficients de corrélation partielle par

les déterminants, en effet :

r A
Y Xq, X2 X3 .. X =

+ o1
P
\/1:; VAM

plus généralement :

- A .
— _ (_1)d o]
Yx,x ... % < (=1)

j’ 2 p \/A A,
00 33

Remarque : les coefficients de corrélation partielle que l'on calcule sur

un échantillon sont différents de ceux de la population totale, on

obtient une estimation sans biais % d'aprés :

- 2 -
(a-p) 5 x, X ... !
22 = d 1 P

3 IR n-p-1




vV 37

5.3.4 - Calcul du coefficient de corrélation multiple R

On obtient une estimation du coefficient de détermination multiple
(R?) en calculant la corrélation entre valeurs ajustées par la relation mul-

P ,
tilindaire Y! = ¥ a. x.. + a_ et valeurs observées Y,
i " j i o i

3=
2
—— '——
, =[z (Yi Y) (Yi Y)
by (Yi -7 = (Yi'-?)2
T (v -Y)2
ou encore : R? = R
2 (Y, - 1)2

On peut é&ealement calculer ce coefficient d'aprés les coefficients
de corrélation partielle :

- 2
X')'f’(1 5 x, 1 x.... X )

R2Z=1-(1-r2 ) (1 -r2
T X1 Y k2’ 4 p’ 12 -1

on obtient, en utilisant les déterminants :

R2 =1 - A

00

5.3.5 - Analyse des variances

On définit la variance résiduelle S; ou variance de Y lide & X1,

- Xp soit S2 par

L
s2=g2=2(Y-Y¥')?
€

L n
on montre aisément que la variance totale est la somme des variances dues &
la liaison multilinéaire et résiduelle
2 2 2
SY = S1 + SE
Mais il s'agit d'échantillon et il faut tenir compte du nombre de degrés de

liberté :
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On démontre que la densité de répartition s'éerit Qgrsque p=0) :

n-1 n-4
fn(r) = F< niZ } (1—r2) : )
=)

La variable transformée t = suit une loi de Student & (n-2)

degrés de liberté.

Ainsi si t_ est la valeur correspondant & la probabilité o] %,
nous aurons p chances sur 100 d'obtenir |tl >.tp ou encore :]r|)-—-_J1____
t2 + n-2
P

Test appligué & un coefficient_de corrélation partielle

Supposons la variable dépendante définie par K variables explicatives.
Soit 6 un coefficient de corrélation partielle dans laquelle on a éliminé

1'influence de K-1 variables.

La densité de répartition @ s'derit :

”

, n-k n-k=3 .
. (=) (-

g (0) =1 = " (1_g2)

: Vo=t

I1 s'ensuit que la variable transformde t : \,n—k—W A suit une loi
de Student & (n-k-1) degrés de libertd. y1-62

Donc si t_ est la valeur correspondant & la pgobabilité P %, nous aurons
P

\’tz + n-k-1
D

19— Il existe également un test dfi & Fisher et utilisant la variable

p chances sur 100 d'obtenir Itl > tp ou g >

Remarques :

transformée z = % Log %iz (r étant un coefficient de corrélation totale ou
-r
partielle). Fisher a montré que cette variable suit approximativement une

loi normale de moyenne nulle et d'décart type (p = 1 pour une

corrélation simple). n - (2+p)
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20— Nombre de variables & introduire dans une régression multiple :
la somme des carrds de résidus T (y-y')2 ; (y' = valeur ajustée par équa-
tion de régression, y = valeur observée) est d'autant plus petite que le
nombre K des variables explicatives est plus élevé. On peut se demander si

cette amélioration est justifiéde par l'introduction de nouvelles variables.

On remarque que RE étant le coefficient de corrélation multiple
obtenu en utilisant K variables explicatives, R£+1 étant celui obtenu en
introduisant une variable explicative supplémentaire, les variances rési-

duelles sont respectivement :

53 =k 3 (5= 7)°

2% = Ta-k-1)

1= 2
- RK‘H Z(y_‘§)2

sz =
S Tamie2)

Pour que 1l'influence de cette nouvelle variable soit significative,

il faut au moins que :
_R2 _R2
! RK+1 < ! RK
(nk-2)  (n-k-1)

. , (n-k-2) (1-R2)
soit : RK+1 A- i =) RK

Exemple d'application : contrdle d'homogénéité d'une série

Explication de 1'écoulement annuel (année hydrologique) de la Cére a
St-Etienne-Cantalés en fonction des précipitations et températures mensuel-
les, il ne s'agit pas ici d'un calcul destiné a la prévision mais plutdt

de contrdler 1l'homogénéité de la série des débits.

Précipitations -
Pour caractériser les précipitations regues par le bassin de la
Cére, on dispose d'une seule longue série d'observations a Marmanhac, série
qui est en bon accord avec celles de Messeix-les-Mines et Argentat (B.V.

Dordogne). I1 se trouve que la pluie & Marmanhac est proche de la pluviométrie



moyenne sur le bassin de la Cére, mais ce n'est pas la une condition néces-
saire pour qu'il soit un bon témoin - on a jugé utile de prendre un témoin
plus étoffé que Marmanhac seul en ajoutant la moyenne Vic-sur-Cére + Saint-
Etienne-Cantalés + Marmanhac de 1948 & 1966 : sur les années récentes, la
corrélation entre les valeurs annuelles des deux témoins atteint 0.99 avec

un coefficient de régression voisin de 1.

Températures -

Il s'agit de la série des températures observées a Messeix qui
est en dtroite corrélation avec celle de Saint-Flour. La série a également

été contrdlée par celle du Mont Dore et de Clermont-les-Landais.

On peut considérer que cette station est un bon témoin de la tem-

pérature moyenne de l'air sur le plateau du Massif Central.

ébits -
Jusqu'en 1945, les débits mesurés & 1l'usine de Montvert (B.V.
764 km?), contrdlés avec la série de la Maronne aux Estourocs, ont &té

affectés d'un coefficient 0.9 (rapport des B.V.), ensuite on a utilisé

la série des débits mesurds a l'usine de St-Etienne-Cantalés.

On contrdle habituellement la cohérence entre débits et précipi-
tations en mettant en corrélation E?O’ dcoulements d'octobre & septembre
?O + .5 Pg. Dans le cas de la Cere, on a utilisé une

pondération plus raffinée en comparant 1l'écoulement annuel & une combinai-

avec P?O, ou mieux P

son lindaire, obtenue par corrélation multiple, comprenant :

- les précipitations des 12 mois de 1'année hydrologique,

- un index de 1'état initial : le logarithme des 7 derniers jours du
mois de septembre précédant 1l'année hydrologique,
- les températures de mai et septembre (mesurées a Messeix)
- Tableau I, figure 2 -
On peut alors s'assurer d'une part, de la représentativité indi-
viduelle des pluviometres, et-également de 1l'hétérogénéité éventuelle d'une

série par la méthode des lignes d'écarts cumulés, qui consiste & prendre
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comme nouveaux axes les bissectrices des axes précédents gradués en

2 (EO + EC) et Z (EO - EC), ce qui a pour effet d'amplifier considérable-
ment tout écart systématique. Ainsi, sur la figure 3, apparalt un écart sys-
tématique d'environ + 2 % en moyenne jusqu'en 1945-46, date de la mise en
exploitation de l'usine de Cantales, et de - 1,5 % ensuite, écart que nous
n'avons pas jugé critique pour la suite des calculs, la corrélation entre
dcoulement calculé et 1l'écoulement observé étant trés étroite. La solution

la plus ratiomnelle serait de n'utiliser que la série 1947-1965.

5.4 - Conditions d'application de la technique des corrélations multiples

Les réflexions et commentaires qui suivent nous ont été suggérés
par la pratique fréquente de ces techniques; une réponse précise, des démons-
trations compldtes pourront &tre trouvées dans la bibliographie (non exhaus-

tive), pour certains problemes.

5.4.1 - L'homoscédasticité

C'est 1'invariance de 1'écart
type des résidus € quelle que soit la y Iy
valeur de X. Cette propriété est fonda-

mentale puisqu'elle intervient directe-

ment dans le calcul des coefficients de o
régression. En effet si la dispersion y{
t

des écarts est plus grande dans les for-
tes valeurs de x, il est évident que ces

donnédes conditionneront les valeurs des

v

coefficients aj obtenus en résolvant le

systeme

n
i21 in e, = 0 pour j=1ap

On peut évidemment effectuer un tel calcul sans aucune précaution,

si 1l'on a des raisons de donner un poids privilégié aux fortes valeurs.

Une procédure, pour calculer les coefficients sans transformation

de variable, consiste & utiliser la méthode des moindres carrés pondérés



n 2
on minimise 2 w? [Y. -aX - b] ,
) i i i
i=1
@, est une fonction de X : w, = aJ(Xi); généralement @ est inversement

proportionnel & la variance des Yik (k =1 & m) pour une valeur de Xi

donnée (ou pour une classe sur X) @ 2 # —e .
170712
i

C'est d'ailleurs le principe utilisé dans la méthode des Probits M .

Plus simplement, et surtout si 1l'on dispose de peu d'observations,

on effectue une transformation élémentaire sur la variable principale.

5.4.2 - La linéarité

Y 4

Cette condition est importante
mais non essentielle, car on peut géné-
ralement effectuer une transformation
simple, en logarithme ou puissance
fractionnaire, sur x pour retrouver une

relation quasi linéaire

D
T=3% a,Z.+a_+¢
. o
=1
X. ou
J
avec 7. = a xP +;3XP—1 + ... ou
J J J
log X,
€ J

On voit ainsi qu'il s'agit d'un probléme d'ajustement, puis de
corrélation; généralement on obtient directement les coefficients de pondé-
ration des transformées de Xj en traitant simultanément les variables expli-

catives transformées, ou non, par les moindres carrés.

Les graphiques de corrélation partielle entre la variable princi-
pale Y et chaque variable explicative Xj peuvent suggérer le type de trans-

formation, on peut songer & procéder ainsi de fagon itérative jusqu'd ce que
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le nuage de points soit ‘sensiblement elliptique, c'est sans doute illusoire
car on ne sait pas & quel moment 1'optimum est atteint et on ne doit pas

oublier que l'on traite souvent un dchantillon de 30 & 50 observations.

Pour toutes ces raisons, la transformation doit &tre simple et
toute extrapolation, en dehors du domaine observé sur lequel ont &té effec-
tués des calculs de corrélation, est a proscrire. Dans ces conditions la

forme mathématique exacte de la transformation n'est pas critique.

Y4 +
. +
Lorsque la relation entre Y et X + 3/
. . , . +
n'est pas linéaire, mais est homoscédasti- . *//*+
"V
que (2), il convient d'effectuer une trans-— . ;/f ’**
to/ T 4
formation sur X. Si la relation en X et ¥ - t;‘_*+*f
7 . ‘*
est non linéaire et hétéroscédastique, on ’ *:*f
. te
effectue une transformation sur Y et éven- .¢4?+: *
tuellement sur X -
B
X

log¥=2a,X +a +c¢
. J J o]

log¥=2a. logX. +a + ¢
g J & J 0

Un moyen pratique de tester la lindarité dans le cas de la corré-
lation simple, et pour de petits échantillons, est de découper 1l'intervalle
de variation & X en trois classes et de tester si dans chacune d'elles la

moyenne des écarts résiduels € est significativement différente de O.

Si 1'on dispose d'un échantillon important de domnées, on peut
effectuer une segmentation, c'est-a-dire découper l'intervalle de variation
de x en classes, a 1l'intéroeur desquelles on ajustera des segments de droi-
tes par les moindres carrés, en lissant éventuellement les paramdtres de
ces droites. On substitue & une relation curviligne, une représentation

"polygonale".
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5.4.3 - La dissymétrie

La symétrie de la distribution des valeurs de & (1a condition
d'homoscédasticité étant respectée) n'est pas fondamentale pour 1'appli-
cation des moindres carrés. Cette propriété est surtout utile lorsqu'on
teste la signification statistique ces coefficients aj (test de Student)
puisque cela suppose la normalité des variables et résidus. En fait, ces
tests sont robustes et restent encore applicables avec des variables dont
la distribution n'est pas trop dissymétrique. La droite de régression qui
passe par les moyennes des Y, lide a X, n'est plus confondue avec le lieu

Y a4

des médianes de la distribution liée.

Toutefois, si la variable
explicative et la variable principale
ont une distribution dissymétrique,
et s'il y a homoscédasticité, cela a

une répercussion sur l'estimation de

la pente a, . >
X
On peut s'affranchir de l'incidence des fonctions de répartition

en calculant le coefficient de rang.

I1 s'agit d'un index destiné a évaluer le degré d'association
entre deux séries de valeurs, par exemple les précipitations du mois de
juin observées en deux stations au cours des 40 derniéres anndes (voir

exemple).

Le principe consiste a remplacer des variables continues par leur
rang; en effet on dispose de deux chroniques de mesures Xi et Yi (1 £ ig n),
n étant le nombre d'années d'observations, on classe ces valeurs dans l'or-

dre croissant (21, ...ﬁk, ...ﬁn) et (?1, e ?n). On constate alors que les
observations effectudes la méme annde n'occupent pas forcément le méme rang.

Le coefficient de corrélation de rang ou de Spearman se calcule
ainsi : n
6 = diz
i=1

p=1 - =
n (n2-1)



di = la différence de rang gqu'occupent Xi et Yi dans le classement.

Lorsque 2 di2 =0, il y a concordance parfaite et p=1; il y a

discordance parfaite lorsque p = - 1.

- On peut comparer deux séries dont la distribution est trés dissymétri-

que, alors que le calcul de r suppose la normalité des distributions.

- I1 est indépendant de toute transformation monotone effectuée sur les

variables.
- I1 est rapide & calculer lorsque n < 50.

- Les coefficients p et r sont en étroite corrélation, cette liaison
étant bien sfir fonction de n. Toutefois le coefficient r est toujours plus

élevé que p, de 2 & 15 % suivant les valeurs de n et r; lorsque les
TP
6)'

variables sont normales : r = 2 sin (

- I1 est non paramétrique (ne dépend ni de la moyenne ni de l'écart

type).

- On peut tester ce coefficient & l'aide du test de Student t =p \/%:gz
=P

avec n-2 degrés de liberté.

- Il n'y a d'ailleurs pas d'inconvénient & adopter pour p l'écart type

der: ¢ =2=r2

* \/ n-1

On peut effectuer une analyse multidimensionnelle de la matrice

des coefficients de Spearman calculés sur tous les couples de variables

[Xi’ Xj] avec 1€ i, jg P.

Les moyennes, ainsi que les variances des séries de rang, sont

égales respectivement & :
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On dispose d'un tableau d'observations sur p+!1 variables :

Y X1 X2 . X3 X4 ......... Xp
¥, Xy Xy X2 Tyq e Xp1
Ty %0 K eeree e Xpn

Dans le cas général Y = I aj Xj +a tE; si 1l'on impose la

condition a = 0 on devra résoudre le systéme lindaire suivant :
n

i .= i o= 1 3
if1 (Yi Z aj in) le 0, pour J ap

1/- Cas ol j =1 : Y=aX+e¢
Z(Yi—aXi)Xizo

conduit & la reld¥ion : -

n

TX, Y.
goi=t - 1

n

3 X2

i=1 T

Le programme de corrélation multiple calcule habituellement :

- les moyennes arithmétiques E; T
- les écarts types Sx’ 3

y
- le coefficient de corrélation rXy =T

il est facile d'obtenir alors :
rS. S +X7Y
D S A

a = -
S 2+ X2
x

2/ - Cas ol j =2 : Y=bX+cZ+e

soit & résoudre :

]
o

n
s (Y., -v X -c2Z.) X
. 1 1 1 1
i=1
n

Z (Y. b X, -
i=1<l 1 CZi)Zi

il
(@]



on obtient :

et :

Autre exemple :

On impose aux

quel que soit 1 ;
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(2 X, zi) (= T, zi) - (= ziz) (= X, Yi)

(z X, zi)2 - (= Xi2> (z zi2)

P

valeurs calculées de satisfaire une contrainte AZ1 a. X.., +a Mo
J o=

J= Ji

on peut alors utiliser une méthode itérative pour esti-

mer les coefficients tout en respectant la condition des moindres carrés;

on utilise alors des techniques de programmation lindaire [7] .

Ces méthodes sont généralement lourdes et nécessitent des temps de cal-

cul importants sur ordinateur,

d'oll un prix de revient élevé. Il pourra

parfois &tre plus astucieux et aussi performant, d'effectuer des approxi-

mations ou transformations simples sur les variables.

5.4.9 - Les corrélations factices

Cela peut &tre le cas lorsqu'on calcule une corrélation entre

X X
des rapports de variables, par exemple entre Y1 =_1et Y2 = _2, Xq, XZ’
X

X3

X3 étant des variables pour lesquelles on dispose de n observations; si,

en particulier, leur variabilité est faible et égale (coefficients de

variation § égaux) on trouve une corrélation de 0.50 entre Y1 et Y2 bien

que X

1

et X2

soient indépendants [8].

De méme, bien que X et Y ne soient pas corrélées, le coefficient

OX 21a1
de corrélation entre X et (X + Y) est égal & [1 + Qag l§

5.4.10 - Les pidges de la corrélation

a) - coefficient de corrélation nul :

Y + b Y
P . -
. la liaison est du type parabolique, *++*+ﬂ?:
,—i‘d-f 4
. oy t sz 4o Yo' + et
. 11 y a hétérogénéité dans la série, /gﬁg;}f*
:,,,&*’_r+

les échantillons partiels étant for- i
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4
) Y

b) - le coefficient de corrélation e
est voisin de 1; du fait d'une densité %
tres dissymétrique, la ou les valeurs ////
dlevées conditionnent les valeurs des

Pl
coefficients 2. e
»-
X

Exemples : Oued Nahal Ayalon

5.5 - Choix des variables explicatives

Pour déterminer la "meilleure" corrélation multiple entre un pré-
visande (ou variable principale) et p préviseurs (ou variables explicati-
ves) choisis parmi m variables, il existe deux méthodes : la régression

ascendante ou progressive et la régression descendante ou régressive.

_ La méthode ascendante englobe différents procédés (Stepwise,
Stagewise ...), sous le vocable régression filtrante (screening regression)
trés en faveur outre Atlantique, le principe consistant & établir des équa-
tions de régression successives dans lesquelles le nombre des préviseurs
croft de 1 & p. Une bonne partie de ces procédés comporte un biais, par
exemple supposons que l'on ait retenu 2 variables explicatives (Y =
a X1 + b X3 + ¢ + €), le principe consiste & orthogonaliser chacun des m-2
préviseurs restant avec X1 et X3 (XK = ch X1 +/5K.X3 + }(K + gK) on retient
comme nouvelle variable celle qui correspond & la plus forte corrélation
entre Y et 'EK, on n'utilise pas réellement les propriétés d'orthogonalité
de la corrélation partielle.

La méthode descendante consiste & mettre en corrélation les m pré-
viseurs et la variable principale Y, puis & éliminer les variables non si-
gnificatives en testant le T de Student ou le coefficient de corrélation par-
tielle. En fait, la méthode que nous utilisons comporte 2 seuils de signi-
fication (ou 2 valeurs de T, T1<: Tz). Aprés la premiére corrélation glo-
bale on €limine toutes les variables dont le T est inférieur a TW’ puis on
calcule de nouvelles équations en éliminant une par une les variables dont
le T de student T, £ T é.T2, la procédure s'arréte lorsque les p variables
ont des T > T2.
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Mais il serait vain de se fier entiérement & une sélection auto-
matique. On tient compte de la continuité dans le temps des équations de
régression, et de la cohérence spatiale des variables sélectionnées par

comparaison avec des bassins voisins.

La stabilité et la signification des coefficients de régression
partielle sont d'autant mieux assurées que le coefficient de corrélation
multiple est voisin de 1. Ce phénoméne est bien illustré par le tableau 3
(Cére & Cantalds) ol 1'on compare une corrélation multiple avec ou sans

termes prévisionnels.

A ce propos, lorsqu'on introduit les précipitations de la période
prévisionnelle, on a intérdt & utiliser un découpage fin (mois) car 1'effet
de la pluie varie avec sa répartition dans le temps. Mais il y a une limite
car, pourquoi ne pas rechercher une liaison de la forme

2
E =3I + c (t) P (t) at
t?

Comme mise en garde, nous proposons le tableau suivant, extrait
de l'article de Fisher "On the Influence of Rainfall ...", et montrant les
dangers d'augmenter abusivement le nombre des variables explicatives rela-

tivement au nombre d'observations.

Avec un échantillon de 13 observations, tel que le coefficient de
corrélation multiple réel entre une variable dépendante et K variables expli-
catives soit nul, Fisher a calculé la probabilité d'obtenir un R dépassant

5, .7, .9

4 .633 | .200 .0055
.897 .519 .0505
8 .984 | .825 .2424




V 54

Un dernier écueil a éviter est l'utilisation de variables expli-
catives trés corrélées, cas de colindarité. Ainsi, dans le cas d'une corré-
lation double, on imagine aisément que le plan de régression risque de pi-
voter autour d'une droite, au gré des échantillons (cf. interprétation géomé-

trique).

Une fagon commode d'utiliser la relation :

2

\/E6 =1+ P +2.40 (e est négligeable devant P)

est de la représenter graphiquement, en portant en abscisse 1'index de 1'é&tat

initial I, et en ordonnée 1l'écoulement en valeur naturelle E6 on trace dif-

4’
férentes intersections & P constant; plus exactement ces courbes sont gra-
duées en probabilité de ne pas dépasser P. On a en effet une estimstion bien
étayée et robuste de la distribution des précipitations par la fonction

gamma incompléte.

La figure 7 restitue bien la non lindarité de la relation entre
6

E4 et P, et surtout met en évidence l'influence dissymétrique des termes

prévisionnels sur 1l'écoulement de printemps.

Connaissant 1'état initial I du bassin versant, par exemple I =
6.6 au ler avril 1967, la prévision est lue en tracant la demi-droite

d'abscisse 6.6.

Conventionnellement on définit la prévision par 1l'intervalle
(fourchette) entre les quantiles 10 % et 90 %. Ainsi, sur un grand nombre

de prévisions, on a 80 % des réalisations & l'intérieur de la fourchette.

Enfin derniére remarque, en utilisant cette méthode de prévision
on admet implicitement que la variance du résidu est négligeable devant la

variance de P :

8.2

Qa
1]
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I1 parait plus justifié d'associer ce résidu & l'imparfaite des-
cription de 1'état initial plutdt qu'aux termes prévisionnels, comme en
témoignent les coefficients de corrélation partielle entre chacun des 2

facteurs et 1'écoulement.

Dans 1l'exemple de la Cére, la largeur de la fourchette est due &
1'influence importante des termes prévisionnels. Pour les bassins & régime
nival, ou 1'état initial, caractérisé par le stock neigeux, est prépondé-

rant, la fourchette est plus réduite, exemple du Drac ( figure 8).

Un moyen simple et évocateur, permettant d'apprécier 1'informa-
tion apportée par une prévision, est de tracer sur un graphique arithméti-
que gradué en écoulement et en fréquence cumulée, la distribution liée

aux conditions initiales d'une amnée particulidre (figure 14).

L'information fournie par la prévision est alors caractérisée
par la "pente" de la courbe en S ( figure 13), porportionnelle & 1'dcart

type 1ié S.. Ainsi la gamme possible des prévisions se situe entre SL = S1 -

1
pas d'influence de 1'état initial, les courbes graduées en probabilité de
P sont alors paralldles & l'axe des I sur les figures 7 et 8 - et SL =0 -

prédiction, les courbes P sont confondues en une seule.

Conclusion

Le choix de 1l'équation de régression multiple finale doit &tre
mfirement réfléchi. On ne retiendra pas nécessairement celle qui conduit a
la variance résiduelle minimale, cet optimum relatif est d'ailleurs obtenu
sur un échantillon limité, parfois il vaut mieux utiliser une relation ro-
buste avec un plus petit nombre de facteurs dont 1l'influence est solidement
établie. Dans l'application.en prévision, il se peut que certains écarts
soient dus & une variable latente (& distribution trés dissymétrique en
général) et dont on n'a pu discriminer l'influence dans le bruit e, sur

1'échantillon d'ajustement.

L'usage des corrélations multiples est le seul critére numérique
objectif qui permette de faire de la prévision opératiommelle car une pré-
vision est définie par une graduation en probabilité de l'écart réalisa-

tion-calcul.
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ORDRE DE CES

RP

13
10 .7665
+8668
«8524
. 3459
«8212
<3715
5420
.5228
«3308
<4383
<4235
+ 3986
«7092
‘.25“3
+5345

Az =9

12

[N
NW NN L WN e

18
22

R2= ,.9546

NOMBRE DE VARIABLES UTILISEES:

16 YARIABLES

1.1305
1.3830
«3740
1.0691
«3984
1,5021
3386
«9725
«5300
«7353
«»3835
5317
1.1778
=7.5647
23,1633
08.5255

Rt S R WMUNVO N
e @© @ o O » 0 ¢ 9 ¢ & O o & o

VM- ONWORNENWHFRORWWME ®

R= .9771 SL=

13 10 11 312 1 2 3 &% 567 8 9 17 18 22

BR

«28
<40
33
32
«30
38
«17
.09
.09
«10
«20
-.05
o184

57.4307

Beoulement 3 OCT-SEP
Précipitations s OCTOERR

2 8 3 2 3 8 3 3 3 3 »

t SEPTEMERE

1ok CEER A CANTAIES TABLEAD I
0 T
REMULOB 3 DECEMBRE 1967
NB. VAR. ET oast
22 32
1 2 3 L) s 6 7 8 9
M 149,60 121.7 103.8 10%,1 120.9 102. 4 85.3 111.2 112, 8
3 ‘806.1 82,3 58,3 56,1 k7.4 46 .0 51.2 562.8 52.6
10 11 12 13 14 is 186 17 18
M 112.4 147,.8 163.0 861,1 478,.6 %11.8 423,2 156,.,7 11,35
S 67.0 77.8 90,6 263.6 145,2 115.7 171,.2 46,9 1.75
19 20 21 22
M 14,89 16.62 16.03 13.79
S 1,34 1.82 1.38 1.63

Logarithme des 7 dermiers jours SEP

Tempdrature moysnns ds MAL
L

. de SEPTEMERE

E.D.F. - DIVISION TECHNIQUE GENERALXE



4 CEEE 3 CANTALES
CLE 1 CLE 2 CLE 3
1083,5063  1046,0000 -43,5063 1934 = 1935
1326,7110 1363,0000 42,2890 - 1936
1056.2307  1078,.0000 21.7693 - 1937
572.2322 565.0000 -7.2322 - 1978
736,4678 721.0000 -15.4678 - 1939
1008,5935  1106.0000 97,4065 - 1940
1233.7810  1245.0000 11.2190 - 1941
582.6935 577.0000 «5.6935 - 1542
508,2782 474,0000 -34,2782 - 1943
592,.8892 620.0000 27.1108 - 1944
1010.7747  1127.0000 116.2253 - 1945
492,7150 549,0000 56,2850 - 1946
717.5858 702,0000 -15.5858 - 1947
695,7414 714,0000 18.2586 - 1948
193.8538 215,.0000 21,1462 - 1949
709.8221 668.0000 -41,8221 - 1350
1312,7438  1326,0000 13,2512 - 1951
761.2952 729.0000 -32,2952 - 1952
1006,3353 929.0000 -77.3353 - 19573
761,9606 771,0000 3.0394 - 1954
990,1461 994,0000 3,8539 - 1955
720,1107 724,0000 3,8893 - 1956
686.2484 708,0000 21,7516 - 1957
803.3620 744,0000 -59,3620 - 1958
802.4520 315,0000 11.5480 - 1959
1117,041% 1132.0000 14,9586 - 1960
1099,.8717  1044,0000 -55,8717 - 1961
976,5103 970.0000 -6,5103 - 1962
1015.6545 993.0000 -22.6545 - 1963
807.5704 779.0000 -28,5704 - 1964
851,8547 840,0000 -11.8547 - 1965
1319,9618  1288,0000 -31.9618 1965 - 1966
MX MY $X SY
861.0938 861.0937 266,4685 269.6439
BX BY R2 R
.3766 1.0000 . 9546 3771
AQ LAMBDA CONF 80 SYX
<2130 73.5107 $7.4303

';0005

E. D. F. - DIiVISION TECHNIQUE GENERALE
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=7

NB. VAR, ET 0O8S
8 30

1
M 13.23 216
S 3.84 31

1.0000
«7012 1
$2433
«6258
<7369
«7079%
<5057

GOSN NN e

4
ORDRE DE CES
1234

RP

1

2 267

3 -.3847

b .3625
A

R2= 5296

8
ORDRE DE CES
12365678

RP

5112
“-1580
6677
«9192
3639
5943
"619}

NP EF NN

R2= ,97125

-e2217 -

2

o5 boh
3 305
«39G0
«5294 1
«79520

« 3715 =~
«2218 =~
1338 ‘-‘
.8612

REMULOB 3 DECEMBRE 1967

3
.2
o3

.0000
« 7243
«1177
3050
«2378
0869

ik VARIABLES

3621
.3334
-1.1620

R 7277

SL=

8 VARIABLES

.0211
.0206
<0341
«0250
0106
-,0275
2,5038

R= .9861

b 5 6 7 8
102.90 99.3 122.0 103.3 1164,2
58.9 54.0 48.6 47.5 17.8

1.0000
<0914 11,0000
«2797 «4698 1.0000
L4542 <1324 «2051 11,0000
-.0801 .0537 =-,1105 =.3501 1.0000

NOMBRE DE VARIABLES UTILISEES:

T B8R

2

vEcoulsment d'AVRIL & JUIN
1.5 50 log des 7 derniers jours MAES
2.1 -,33 Produit température . dcowlemsnt MARS
2.0 «51 Eeeulement MARS

2.6366

NOMBRE DE VARIABLES UTILISEES:

VEcoulemsnt d'AVRIL & JUIN
8 <17 Log des 7 derniers jours MARS
8 -.04% Produit écoulement . température MARS
2 .32 Ecoulement des MARS
9 .48 Précipitation 4'AVRIL
Q " de MAX
5 .13 " de JUIX
7 -,13 Température moyemne de MAI
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REMULOB 1} DECEMBRE 1967

NB. VAR, ET 08S,

12
12

2 .
1
Mx
13.2317
BX
«3791
AQ
.0000
I
MX
189.0636
BX
9875
AQ
Z2.3440

EXPOSANT CHOISI POUR 2

DONNEES NON TRANSFORMEES

MY
13.2317

BY
1.0000
LAMBDA
- 1499

MY
189.3623
BY
29892
LAMBDA
«1576

EXPOSANT CHOISI POUR Y NHATURELLE

AJUSTEE

SX
3.8038
R2
93775
CONF 380
«7374

SX
103.9837

R2
<9751
CONF 80
20.999¢0

3 36 CERY
1 2 3
M 13,23 6.42 4,39
s 3,84 1.68 2.86
R
1 1.0000
2 ~7853 1.0000
NOMBRE DE VARIABLES UTILISEES:
3
ORDRE DE CES ¥ VARIABLES
123
RP 8 T BR
2
1 VBegulement d'AVRIL a JUIN
2 .9430 1.0047 14,7 o lals Index de 1'état initial
3 .37%0 .9982 24,9 7l Termes prévisiomnels
Az 2,.3985
R2= ,977% R= ,9887 SL= .5761
CLE 1 CLE 2 CLE 7 CLE 8

: TAPER 1 SINON 2

SY

R

-3887
* SYX

5761

sY
104.0697
R
9875
SYX
16,4055

E.D.F.- DIVISION TECHNIQUE GENERALE
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b

w
WOU”JSWOQG\HQUN—‘O\D@Q mmh\lﬂdstbﬂ-lg

X

13.9403
18,5777

8.1291
12,9774
18,1122
16.7726
13,4265

7.2196

8.5827
12,6546
12,0032
13,1625

8.3353
12,9550
20,8697
11.4315

8.89383
14,3014

8.2001
11,9370
11.7012
14,9236
17.0393

9.5944
12,3494
16.0659
18,4717
18.6096
17,1820

14,7600
18,7300

7.83700
12,9600
17,4600
18,0000
13,1500

8,8300

7.6200

8.3700
12,1200
12,5300
14,4900

7.6200
13.0400
20.4200
11,5300

9.0600
14.8300

8.6600
11.4000
11.14%00
14,7000
16.6700

8.7700
12,0400
16.4300
18,8900
18,2200
16.6400

.4

—_ e
TABLEAU 5
b CEER A CONTAIES
2 4
(x*4) (x,) X, =Xy
194,3328 217.8576 .8197
345.1294 350.8129 «1523
66Q0829 61.9369 -02591
168.4119 167.9616 -.0174
328,0508 30,8516 ~.8522
281.3204 324,0000 1.2274
180.2719 172,9225 -.2765
72,6968 77.9689 «3038
52,1222 $8.0644 4004
73.6634 70.0569 -.2127
16001396 1“6<8944 '053“6
144.0762 157.0009 <5268
173.2509 209.9601 1.3275
69.4780 58.06 0Lk -o7153
167.8322 170.0816 <0850
“35.5“25 “16.976“ -.““97
130.6798 132.9409 .0985
79.1798 82.0836 1617
204,.5303 219.9289 «5286
67.2418 74.9956 -4599
142 ,4917 129.9600 -+5370
136.917¢0 124,0996 -.5612
222.7135 216,.0900 -.2236
290.3366 277.8889 -.3693
92,0530 76.9129 -, 8244
i52.,5078 144,9616 -.309%4
258.1137 269.9449 «3641
31,2023 356.8321 ~4183
346.3189 331.9684 -.3896
295.2196 276.8896 -.5420

E.D. F.- DIVISION TECHNIQUE GENERALE
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.1000E+01

LA CERE A CANTALES

2
Corrélation partielle entre ‘/ﬁi et P
a4 I constant

2
AE = \[{:i - (1.61 I + 2.87)

Figure 4

AP = P = (o61 I + 47)
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Corrélation partielle entre :/Ei et I
a P censtant

26
28 = \[154 = (1e21 B + 7.92)
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Figure 5
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|
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Figure 6

i
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6
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LE DRAC AU SAUTET PREVISION D APPORTS AVRIL-AGUT
8 .
E4 observé
o
8
8
@ o
Q
3
o
<
S’: +4 Figure 9
o
s
T o 8 3 3 1 -
S E4 = 1,13 P10 - 91 E10 + +55 Q1O + o710 Eq + .79 P4 + 1.19 P5
200 I400 I600 r800 l
.1000E +01 + 86 P6 + 56 P7 - 13 67 - 18 &, + 323




.1' e .;;7:*’ -

1.

(1)

e V79

SIGNTFICATICN D'UN COEFFICIENT DE CORRELATION WOLTTPLE »

ABAQUES A, B, C

o 2 2
- 2
!
.8 e
» Corrélation pimp ////V E
.7 4 o
. Y=a0+a1 z, /// =
7/ 7
./ a/
4 n =100 4 //// //
3 n = so‘\_\\f /| /l/
.z T 30""'\4‘, // /Q\ ®
A AA(i:)4 /// /ZL\*\\:N: : 1Z
7T :
. 2 .3 .4 .5 .6 T .8 9 1.00

.

explicatives est fixé.

v

¢

JuoTo1Jjeoo juia o enb Qi Jns Sa0UBYD (6 ® UO
g $INOTBO JUSTOTJJS0D Un 09A® 38 ‘PUUOP U UM Inog
enbriogys oTd T3 TNW UOT}BTPIIOD 8P JUSTOTIF0D

o

- La taille de l'échantillon est variable, le nombre des variables

‘880 BOp ¢ G sUBD

SUOT}BAISSQ0 U Op UOTTTIUBYd® un eaade,p
nue}qo oTd F3TNUE UOFIBTPIIOO 8p JUSTOTIJe0) ¢ by

Samie

A
Corrélati¢n 2 J vartablep A Corrg¢latipn & [ varfiables /‘1///[
==ao-ia1x1+;212*53x3/'///( Y=ao+a1x1+ ‘+a7x7 ///(//
Y/ Wi
v/l MWWl
zz;go~\J////A/ n;so\“:\v// il
n=30\;Q/l// 1 7/ / |
)oY SN NC / ]
YAVATATE S8 AV
2/3 [4 /56 7 .8 .9 1.0 .1 .2 .3 4'5{6/7 8:1:1?




ABAJUES D, E, ¥ =y %t;a
]V — -
R
1.0
.9
. 7 = 200
p
.5
pm//
{7//imme
L
7 7
g 238 R1

.3 .4 .5 6 .7 .8 .9 1.0

(2) - La taille de 1l'échantillon est fizée, le nombre de
variables explicatives varis.

—>
o) ~J D D (&}

/ - /i
Y, . VAl
£ 7
A | A/
Y ] 1]
7//ANO . VT
7 i

. o . .
O — n N

R1

R1




v 72

L'exemple de 1'oued Nahal Ayalon illustre les points suivants

hétéroscédasticité (figure 1)

non linéarité (figure 1)
- choix de la transformation & appliquer & E (figures 2 et 3)

- incidence de ces transformations sur les corrélations partielles
(figures 6, 7 et 8) et sur la corrélation multiple (figures 9, 10
et 11)

- robustesse de la transformation en racine carrée (figure 12)

D

- régression avec contrainte, I a; Xi. +a > 0, simplicité et économie
3=
en temps de calcul obtenues par une transformation simple sur E, par

rapport & un algorithme sophistiqué et onéreux & mettre en oeuvre, pour
un résultat presque trivial (il consiste & ajouter un terme positif a

la constante de 1l'équation de régression).

Calcul des coefficients de dissymétrie ( ﬁ1> et d'aplatissement ( ﬂ2) pour

les variables utilisdes dans les corrélations multiples

/
P | T | S |Log g/12| g1/6|g)/3 5/1254/9| /2 | g2 /4| g

VE: —.12{-.10| .06|-.57|-2.29|-1.65|-.24| .22| .37 .60| .91 |1.40[1.97
£, 01 .01l o .33| 5.22] 2.73] 06| .05| .13] .36| .84|1.96]|3.88

B 2.05|1.47]2.03|2.56| 6.67| 5.28]2.89(2.81|2.87|3.05{4.45(4.4516.12

(rappelons que pour une variable normale B, =0 et py = 3)

Référence: Thése de Milu Rosenberg,Hydrologie d'Israel,Grenoble 1970



Exemple : Apports annuels de 1'oued NAHAL AYALON
(années hydrologiques 1938=39 i 1959-60)
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Année n° P I S
1938-39 1 795 .404 6 66.0
40 2 530 L491 8 15.8
41 3 566 .370 7 13.3
42 4 587 .488 9 13.6
43 5 848 .300 10 33.0
44 6 480 .486 8 4.5
45 7 803 .336 12 21.0
46 8 595 .377 7 12.0
47 9 357 .456 6 .5
48 10 571 .364 7 4.7
49 11 816 .305 12 23.0
50 12 663 479 7 30.0
51 13 310 .362 4 o]
52 14 807 .496 6 84.0
53 15 610 .405 10 5.
54 16 620 .354 9 9.1
55 17 432 .486 4 13.0
56 18 830 .364 10 37.5
57 19 615 .309 10 .7
38 20 505 472 5 14.0
59 21 448 .468 9 2.3
1959-60 22 270 a1l 4 0
P = précipitation annuelle (septembre-aodit) 12 P 1
I = indice de concentration des pluies (Roche), I = [Izlx T L )ZJZ
N =1
avec P, = pluie mensuelle du i°"® mois et P = —17 Z'.Pi
S = nombre de séquences pluvieuses
Tableau des coefficients de corrélation partielle
(E)qéao+a] Ptaygl+a,s
1/12 2/12 4/12 5/12 4/9 6/12 7/12 /12 12/12
q = .083 . 166 .333 417 YA .500 .583 .750 1.000
P = L7874 .898 .978 . 986 .987 .987 .983 .971 . 942
I= .629 .728 .860 .882 .881 .868 .819 712 563
S = .255 |=-.007 |[-.733 |-.870 [-.887 |-.900 |-.896 |-.871 813
R = .843 .914 .9780 .9855 .9861 .9854 .9807 .967 .936
Tableau des &carts réduits
q q
(Eo) (Ec)
o q
E)
(1946=47) | =.314 +.102 =.105 -.096 -.083 -.062 -.013 | .072 174
(1950=51) | =.822 -.651 -.202 -.068 -.022 +.049 130 (246 .343
(1959-60) .097 -.019 .029 .072 .090 . 123 172 .270 280
(1960-61) | -.972 ~.755 -.201 -.031 .022 .106 .207 | .334 .435
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Cette technique d'analyse n'est cependant pas un "fourre-tout"
et nous avons essayé de montrer sur des exemples le rdle de l'utilisa-
teur, qui cherche & maintenir en permanence un 4quilibre entre les rigueurs
théoriques de la statistique mathématique et les réalités physiques et
pratiques, attitude raisonnée qui n'est pas susceptible d'un traitement

automatique.

5.6 - L'autocorrélation ou corrélation en chaine

Lors du premier exposé, nous avons vu comment utiliser des séries
statistiques de débits moyens journaliers pour décrire la répartition du
débit selon 1l'époque de 1l'année en un point d'une rividre (Loire, Drac,
Romanche). Prenons 1'exemple de la Cére & St-Etienne-Cantalds pour laquelle
on disposait de 30 ans d'observations journaliéres. A partir de la distribu-
tion empirique des débits du 5, 15 et 25 de chacun des mois de 1l'année, on
a graphiqué les valeurs des quantiles 10 %, 50 %, 75 %, 90 % puis un lissage
a été effectué pour obtenir des "courbes quantiliques'" réguliéres tout au

long de l'année.

Ce faisant on a admis implicitement qu'il n'y avait pas de tendance
4 long terme, c'est-d-dire qu'd une date donnée, dans dix ans par exemple,
on aurait autant de chances de ne pas dépasser tel débit. Cette tendance a
long terme aurait pu &tre due & une modification de climat par exemple (on
sait qu'un tel phénoméne n'est pas perceptible & 1'échelle du sidcle mais

plutdt du millénaire).

Comme exemple typique de phénoméne ayant une tendance, on peut
rappeler la "loi" du doublement tous les dix ans de la consommation d'élec-

tricité en France, il ne s'agit en fait que d'une relation moyenne.

En étudiant le graphique du régime des débits de la Cére & St-
Etienne-Cantalés, on constate que les courbes quantiliques ont une variation
saisonniere, d'une part leur position sur le graphique "date-débit" évolue
suivant les mois et que, d'autre part, la situation relative ds courbes est

également variable suivant 1'époque.
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I1 v a cependant des périodes telles que décembre et janvier,
février et mars, juillet et aolit par exemple, ol ces courbes sont rela-
tivement stables, c'est-a-dire que la distribution empirique du débit
journalier est sensiblement identique quelle que soit la date, & 1'inté-
rieur de l'une de ces périodes : le phénoméne est stationnaire. Cela ne
signifie pas que les débits journaliers d'une saison durant une annéde
particuliére, 1966 par exemple, se maintiendront au niveau d'une méme
courbe quantilique; car si le débit d'un jour peut alors &tre considéré
comme indépendant de la saison, il sera soumis & deux influences princi-
pales, d'une part son inertie qui integre le comportement du bassin ver-
sant la veille et les jours antérieurs, et d'autre part les événements
météorologiques qui surviennent le jour méme ou la veille (mais dont les
effets sont différes de n h), cette corrdlation étant supposée stable

pendant la saison étudiée.
Donc si 1l'on veut disposer d'une information exhaustive, il faut
compléter le graphique descriptif du régime des débits par les fonctions

d'autocorrélation propres a chague saison.

Avant d'illustrer ces généralitéds par un exemple concret, nous
g P ’

essaierons de leur donner un contenu plus formel.

5.6.1 - Analyse des séries chronologiques -

Pour différentes raisons : séries disponibles, lissages d'erreurs
de mesures, on étudie généralement le débit moyen journalier, qui est une
moyenne de valeurs instantanées; ce faisant, on remplace un phénoméne conti-
nu par un phénomene discret; c'est aussi le cas des températures par

exemple.

Le tableau de ces valeurs, en fonction du temps, constitue une
chronique, dont on veut étudier les propriétés statistiques, car le débit
& l'exutoire d'un bassin est la résultante de différentes causes dont les
effets sont complexes et interférents et lorsqu'on veut le prévoir, on ne

peut envisager une approche déterministe.
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I1 serait plus exact d'étudier la fonction aldatoire Q(t) dont
les valeurs sont des variables aléatoires qui constituent une suite infi-
nie dépendant du parametre continu t, mais en fait on ne dispose que
d'une réalisation discrétisée de cette fonction, la chronigue des débits
journaliers Qt du ler janvier 1936 au 31 décembre 1965 pour la Cére par

exemple; gréce au théorsme ergodique on verre que ceci n'est pas grave.

On définit la statiomnarité au sens large du phénomene, par la

constance des parametres suivants quel que soit t :

le moment d'ordre 1 M(t) = E ﬁQ(tﬂ =m

la covariance C(t,7) = B [Q(t) - M(t)] [Q(r) - M(T)} = C(t-1)
t <t <t + Kt
La covariance ne dépend que de l'intervalle de temps (t—r) mais

pas de t.

Ces propriétés générales, issues du calcul des probabilités, s'ap-
pliquent également dans la pratique ou l'on ne dispose que d'une chronique,

et non d'une infinité de chroniques, gréce au théoreme ergodique.

Ce théortme assure que 1'espérance mathématique de Q(t) et
Q(t) . QQC) obtenue comme moyenne sur un ensemble de chroniques peut &tre
remplacée par la moyenne temporelle des mémes quantités sur une seule chro-

nique.

Ayant discrétisé, la schématisation la plus générale que l'on puis-
se donner d'une série chronologique consiste & écrire
Q =T +S +U, ®

I1 existe également un modéle multiplicatif Qt = Tt . St . Ut que
1'on rend additif par transformation logarithmique.

5.6.2 - Quelques commentaires sur le modéle général (1)

La tendance Tt se détermine en considérant les valeurs moyennes

annuelles de Qt soit ag, et, en recherchant la relation entre ag et le temps

n en amnées (1 ¢ n < N) d'aprés N anndes d'observations.



La composante saisonniére, l'influence de la tendance étant
éliminée de Qt’ s'obtient en considérant les N séries de 365 valeurs jour-
naligres (si l'intervalle unitaire est la journée) ou de 52 valeurs heb-

domadaires (si l'intervalle unitaire est la semaine).

La variable Ut’ les effets de tendance et saisonniers €liminés,
se présente sous forme d'une liaison en chaine simple ou multiple, par

exemple :

et
—

K
U, = E a, Ut—i +

ﬁe Vt—e + et
1 e

(Vt—e étant une variable explicative et €, 1'aléa résiduel).

Nous Gdonmeps ci-apres quelques exemples de tendances a long terme.

2%

- Tendance nulle :

=S5, +U
Q =5y + T4 '

— Tendance linédaire :

Qt=(at+ﬂ)+3t+Ut,

- Tendance exponentielle :

Qt =q@e + St + Ut
mY
9, = ¥t¥ 45 + T, ,

- Tendance logistique (avec saturation) :

= 1
Qt = +3S, +TU

- t t
1 +ae pery

- Tendance périodigue :
g 2Ky
Q = ao+K=4 ay cos(——ﬁ——— + 9

<)
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Cette panoplie de modéles de tendances n'est pas limitative. Ce
qui fait la difficulté d'identification du type ou de 1l'existence des ten-
dances est que 1l'écart type de Ut est souvent supérieur au gradient (TN—TO).
(on utilise généralement les moindres carrés pour caler les moddles).

Nous avons admis que la tendance T, n'est pas discernable &

t
1'échelle du siécle pour les débits : Tt # 0. Encore que ce ne soit pas le

cas semble-t-il pour les températures de 1l'air.

On peut d'ailleurs proposer un modele pour Tt qui soit en lignes
brisées (voir travaux de Mandelbrot et Meija) et qui, contrairement aux
modeles précédents, en particulier celui qui reléve de l'analyse harmonique
et décrit des "cycles'", suppose que la tendance est constitude d'une sui-
te de segments d'égale dunec dont les ordonnées des intersections sont
aléatoires. Ce modele séduisant car il rendrait compte de séquences d'anndes
seches ou humides, sans périodicité, reste délicat a ajuster sur les séries

observées.

Pour les débits, en supposant Tt #/O (non identifiable), on devra
donc éliminer l'effet saisonnier pour obtenir les paramétres a, et g, de
Ut'

L'opération consiste & ajuster une courbe sinusoidale, aux moyen-

nes des 365 débits journaliers (1er janvier au 31 décembre) calculées sur

n années
[ 2 2K 7;
TJ —_
5, = I ¥, cos ( T @K) +Q ®
J K=1
ou 2ou3 2K 7] 2K m
StJ = KEO <8K cos —3—6_5— + bK sin —-%—65—) @

On peut d'ailleurs effectuer la méme opération pour les écarts
types des 365 jours et étudier Qt sous la forme d'une variable centrée ou,
centrée-réduite désaisonnalisée :

= _ = £l %]
Ut Qtj mtj ou Yt .
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Or, cette opération ne suffit pas & assurer la stationnariteé des
débits ainsi transformés, car il faut aussi vérifier que la covariance
b Yt Yt+k est constante durant les 365 jours, et que la loi de probabilité
du résidu € de l'équation d'autorégression est constante durant toute
1'année : les applications montrent que cette hypothese d'invariance de la
structure interne des chroniques de débits au cours de 1l'année n'est pas
toujours vérifide : supposons que 1l'on dispose de N années (1<£1<€N)
d'observations journalidres. On devrait étudier 1'évolution saisonniere
(avec j constant, pour 1 < j g:365) des coefficients d'autocorrélation
d'ordre K (1€ K £ 10)

N

r. =12 (. .) (Y. .
J,K 1= (1,3)(1,3 +K

)L
N
ceci est possible si N est suffisamment grand (N :>100). Dans la pratique
N est souvent inférieur & 50, et la dispersion d'échantillonnage des rj X
9
ne permet guere d'identifier leur composante saisonniere. Mais dans ce cas,

le calcul généralement effectué d'apres

N 365-K ( ) \ ]
r, = zZ Z Y., .) (Y, . J e
K i=1 j=1 L3753+ K W (365-K)
qui suppose implicitement que r. x = g et ne dépend plus de la date dans
J 9

1'année, est généralement incorrect.

Pour ces raisons, il est préférable, le plus souvent, de ne pas
effectuer d'analyse harmonique (dont 1'appareil mathématique peut aussi faire
illusion) pour éliminer la composante saisonniére, mais de limifer 1l'analyse
aux périodes de 1'amnée (2 & 5 mois) pour lesquelles on s'est assuré de la
stationnarité & 1l'aide des courbes quantiliques du graphique descriptif du

régime des débits, et du corrélogramme calculé par bimestre ou trimestre.

Par exemple, si 1l'on considére le ler trimestre (1er Jjanvier-31 mars),

il sera plus exact de calculer :

[N 90-K

;
=l o) (.
L (5 05| T

3=



Nous donnons en exemple le cas de la Loire & Blois ol l'on a
ajusté & titre d'exemple, pour les débits moyens décadaires, la sinusoide (:)
par les moindres carrés (sur les données naturelles) et la sinusoide'(:)par

1'analyse harmonique (aux données en logarithmes népériens) :
- ajustement des 36 moyennes

- ajustement des 36 écarts types

- ajustement des 36 coefficients d'autocorrélation d'ordre 1. Il aurait
fallu compléter par les coefficients d'autocorrélation d'ordre K > 1
et les paramdtres des fonctions de répartition décadaires des écarts

résiduels Eij’ car :

Qt. - m,
Y . =—l—sl @
tJ o,

K
YtJ = iE}[ al,] Ytj—l + € 't,] @

la relation (:) se simplifie si l'on admet que la liaison en chaine est

d'ordre 1.

Remarque : l'ajustement de la composante saisonniére par les moindres carrés
a l'avantage, par rapport & l'analyse harmonique, de fourmir la
précision de 1l'écart entre le modele et les normales calculées

sur les observations.

5.6.3 - Calcul pratique -

Considérons le cas de la Cére a St-Etienne-Cantales; on veut éta-
blir la relation qui existe entre le débit d'un jour quelconque de la pé-
riode 1er février - 31 mars et les débits des jours précédents. Pour tenir
compte de la non lindarité de la relation et pour rendre homoscédastique
1'écart entre la relation calculée et le débit observé, on effectue une trans-—

formation en logarithme :

Xj = log 10 Qj (1e 10 élimine les décimales pour faciliter la

perforation des données) ;
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_on cherche & établir une relation de la forme :

quel que soit j entre le ter février et le 31 mars. Pour cela on calcule,

si n est le nombre de débits des 2 mois pendant N anndes (n = 59 N)

59-K N 59-K N 59

N
1 1

.., = s oz (x.) & o..)- (z = x. )(=z =% ..

K nKN . 5 1,37 1,347 T (ox) im 3= 4D i e DI
, U 59—K( ) ; N 59K

C_ = oz (x, .)2- T 2 X, .)?

ok = nKN 2y s 1,3 C=E (i=1 5= 1,3)
°kx

T ———2 Y

X
CoK

Le graphique 1, en fonction de K est appelé corrélogramme; il four-

K
nit une premidre indication sur la structure de la relation interne des dé-

bits.

On démontre que l'on peut obtenir les coefficients Xy .. @

en résolvant :

h r b r
[ 1 I‘1 ..... I’k_.] 51(1 ZC‘,1
T, 1T e, rk_2 a5 -
I‘K~1 ..... 1 a/l‘{ ].T
b - - k 4

I1 est dquivalent d'utiliser la méthode des moindres carrés en

cherchant & minimiser le résidu e.

Le point important est de savoir combien de coefficients on
retiendra, et quel sera le niveau de signification, c'est-a-dire a partir
de quel moment peut-on considérer que tel coefficient n'est pas signifi-

cativement différent de O.
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Pour cela on effectue les calculs progressivement, on part d'une

matrice d'ordre 3, puis 4, ..., etc; on teste soit la variance résiduelle,
s0it les coefficients de corrélation partielle entre Xj et Xj—p’ les
effets des Xj-1’ Xj—2’ .., étant éliminés.

Dans le cas des débits, généralement 2 ou 3 coefficients suffisent.
On voit que le fait d'augmenter l'ordre de la matrice de corrélation laisse
les premiers coefficients tr2s stables, alors que les autres se mettent a

osciller autour de O.

Lorsque la liaison entre valeurs successives est une chalne de

Markov simple, soit e = r%, il est facile de voir que :
X.-X X, , - X
= r (=) + €,
o 1 o J

avec 0_ = \/1 -r?
€ 1

toute l'information passée est contenue dans la valeur précédente Xj—W'
Les coefficients de corrélation partielle entre Xj et Xj X (1 <K g

sont nuls.

Dans le cas d'une chaine d'ordre 2, toute l'information passée

est contenue dans les 2 derniers états (Xj—1’ Xj—Z)
r —
X. - X - r2) X - - X
3 r, (1 -1r2) Xy L %2 (1 - r2) X, ,- % ..
o 1 - rf o} 1 - rf o J

Ces relations supposent évidemment la stationnarité des moyenne -

écart type - fonction de répartition de Ej pendant la saison.

’ X,j—'] - a, Xj—-?. .

et on établit leur distribution empirique. Il est alors aisé d'effectuer

On calcule alors les résidus sj = Xj - a

une prévision :
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- sur le graphique Xj’ ( a, X + a. X .) il suffit de tracer

1 751 2 Tj=2’
les droites a p %, paralléles entre elles, € étant le quantile cor-
respondant & la probabilité p %.

On peut vérifier que la distribution des résidus par classe de

( @, Xj—1 + @, Xj_2 + ...) est constante quelle que soit la classe.

Cette analyse permet de faire deux opérations

- la prévision par inertie, que l'on pourrait améliorer en décomposant
€ en effet de la pluie et un autre terme aléatoire. En réalité, il y a wn
effet d'autocorrélation pour les résidus supérieurs & un seuil, mais compte
tenu de leur petit nombre, cet effet est noyé dans 1'ensemble des résidus
sans autocorrélation : ej = akR, - B Rj—2 + 55, pour Rj > RO (seuil),

3=
el étant réellement un bruit blanc (la pluie peut &tre traitée en v

R. = —ET H
5=

- la simulation : on peut, a2 l'aide de nombres au hasard, générer des

séries fictives de débits connaissant les coefficients saisonniers @,

(12, v oar B les lois de probabilité de Rj et e!, par saison.
/ : J
Remargue : 1l est assez dangereux d'appliquer cette technique sur les va-

leurs journaliéres d'une saison (2 ou 3 mois) dont on ne dispose que
de 1, 2, 3 ou 4 années d'observations; en effet, on peut montrer que
les coefficients d'autocorrélation calculds sont alors affectés d'un
biais systématique important. Ce biais tend & disparaitre pour des

échantillons de 1 000 & 2 000 valeurs.

Exemple pour un schéma Markovien simple, la mémoire & 1l'instant t est
entierement définie par la mémoire & l'instant t-1 : Lo=pX 4+
2
V1 -p . €, avec un coefficient d'autocorrelation théorique p et
une taille d'échantillon n le coefficient d'autocorrélation empirique

r calculé sur 1l'échantillon est :

p = 0 0.5 0.95 0.99 1
25 r = 0 0.44 0.84 0.87 1
u = 50 r = 0 0.47 0.93 0.93 1

I
1}
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5.6.4 - Autocorrélation multiple

Lorsque l'on recherche une corrélation multiple entre une variable
principale temporelle (débit journalier d'un grand fleuve) et des variables
explicatives temporelles (débits témoins d'affluents amont et éventuellement
précipitations & bassins amont), il faut non seulement calculer les coeffi-
cients d'autocorrélation propres a chaque station mais les coefficients de

corrélation sériale croisés, avec déphasage.

Ce que l'on cherche & obtenir c'est une relation (stationnaire

pendant une saison) de la forme

7 et U étant les débits témoins amont (en logarithme éventuellement).

I1 est conseillé, pour trouver les déphasages
pagq pour Z et sat pour?U,

de calculer les équations d'autorégression propres a chaque station :

.

K
Y.= 2 « Y. +oa + g,
Ik BOIE 0
L
= 1
{ Zj Z By Zj-l Bt QJ
1=1
I
o= 2 . .+ + .
UJ 2 ¥ UJ_l Xb WJ
| =

on calcule ensuite les coefficients d'autocorrélation croisés (avec décalage)

entre les chroniques de ej d'une part et Oj, nj d'autre part,
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Autocorrélation des déhits journaliers (en logarithme)

durant la période ler FEVRIER - 31 MARS

Coefficient de corrélation entre
les débits des jours j et j+k

rj, j+
rj, j+e
r., j+3
r., j+é
rj, j+5
r., j+6
r., j+7
r., j+38
Ty J+9
r., j+10
r., j+i
r., j+t2
r., j+i3
rj, J+14

r., j+!5

«515

464
o441
0420
«397
377

(1936-1965)

E D F-DIVISION TECHNIQUE GENERALE




g2

' p@BTE!GAUROE TERMINEE . v 92
KEFQ36452 FPO12223 DPOQ7L4LY -
GENERATION TERMINEE
CLE 2:LECTURE DE LA MATRICE TRIANGULAIRE COMPLETE
SINON LECTURE DE LA PREMIERE LIGNE UNIQUEMENT

CLE 1:SUR RUBAN

ey g andt woevelakiog

1

STNON AU CLAVIER £
MB D OBSERVATIONS ET ORDRE MAXIMUM % - i
1800 9 . e 3 P
1 .9413 .8664 .7960 .7301 .6728 .6216 .5824 '5“785%23 51.'
N= : °7f3
3 1= 1 J 3 =
J= 1 -1,3000 -1.0000
= 2 + 74060 1.1d30b
J= 3 =.1724 -.1724
R?2= ,8889
N= & I= 1
J= 1 -1.3004 =l.0viy
Jd= 2 s 7421 1.1969
Jd=s 3 -+1299 -,1937
Jd= 4 «0193 .3193
R?= ,8890
S = ,9996 SEUIL= .9994VARIABLE NON SIGHNIFICATIVE
M= S I= 1
Jd= 1 -1.500Q -1.,40300
= 2 7421 1.1071
J= 3 -. 1304 -.1901
= 4 «0220 .0329
J= 5 -.0122 -.ul22
R2= ,8890
S = .9999 SCUIL= ,9994VARIABLE NON SIGNIFICATIVe
N= b = 1
Jd= 1 -1.0000 -1.00U0
Jd= 2 o 7TH204 1.1075
Jd= 3 -.1311 -.1972
Jd= &4 .0261 .3392
J= 5 -, 3324 -, 0483
J= 6 .0326 .0326
R2= ,3891
S = ,.9989 SCUIL= .9994VARIABLE SIGNIFICATIVE
N= 7 I= 1
J= 1 -1.06G33 ~1.0000C
= 2 7422 1.1475
= 3 -.1309 -.197y
Jd= 4 «0260 «3391
J= 5 -.0317 -, 0477
J= o .0196 .0293
J= 7 .0C30 « 0030
R2= ,8891
S = 1.,0000 SEUIL= .9994VARIABLE MON SIGNIFICATIVE
N= 3 I= 1
= 1 -1.30300 -1.00u0
J= 2 e 7430 1.1072
= 3 -.1320 -.1991
Jd= b4 e0283 » Q425
. J= 5 -.0336 - U504
Js 6 .0283 <0432
Jd= 7 -.,05355 -,0753
J=z 8 «07037 «3707
R2= ,8897
S = ,9953 SEUIL= .9994VARIABLE SIGNIFICATIVE



LA CERE a St-ETIEVNE-CANTALES
FEV-MARS (1936=1965)

Fréquence de Ej = Log 10 Qj - (1.1 Lag 10 Qj-! = 19 Log 10 Qj-2 + .02 Log 10 Qj-j)

i

MOYENNE - 162 ECART TYPE «108
NO LIM,SuP N FREQUENCE F,CUMULEE
2 =s25 1 « 06 - 06
3 "'.20 1 l06 '12
4 =el5 1 «06 018
5 - 10 b «24 ¥
6 '.05 11 .65 1.07
7 »00 27 1.61 2,68
8 02 19 1,13 3.81
9 04 36 2,14 595
10 «06 54 3,21 9.17
11 <08 81 b, 82 13,99
12 .10 134 7.98 21,96
13 «12 211 12,56 34,52
14 o1l 243 14,46 48,99
15 .16 219 13.04 62,02
16 °18 147 8.75 70.77
17 «20 108 6o43 77.20
18 «22 68 k.05 81,25
19 024 42 2,50 83.75
20 «26 53 3.15 86,90
21 28 38 2,26 89,17
22 «30 25 1.49 90,65
23 «35 45 2,68 93.33
24 <40 50 2,98 96,31
25 45 22 1.31 97.62
26 «50 13 77 98.39
27 55 11 «05 99.05
28 «60 3 138 99,23
29 «b5 7 42 99.64
31 «80 5 «30 99,94
32 « 90 1 «06 100.00

E. D F - DIvVISION TECHNIQUE GENERALE
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LA CERE & SAINT-ETLENNE-CANTALES

Prévision du débit moyen jourmlier par sutacorrélation
en février et mars (1936=-1965) n = 1680

.1000E+01

7 Log (10 Q)

1410 Log (10 Q, ;) - 419 Loz (10 Q, ) + .02 Log (10 Q,_

3)

T T
1 2 3

-1000E+01
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VI - L'ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) - APPLICATIONS

6.1 - DEFINITIONS

6.1.1 - Définition algébrigue

On considére p variables X [Xq, XZ’ ceey Xj’ ceey Xp pour les-

quelles on dispose de n observations (mesures) simultanédes.

N . 4 1
lere observation Xy 4 Koy erecncncns qu
2eme observation %5 Koy ereeeceens XP2

ieme .

n observation X X X
n 2n n
4

Notons [Xpn]cette matrice de données.

On calcule alors la moyenne de chacune de ces p variables, leur
dcart type ainsi que les coefficients de corrélation totale entre tous les

couples possibles de variables :

n
moyennes Fg, ooy M avec M., = l Z X..
! o 3 D Ji
écarts 1 o L
eee, O avec : 0. =|-- 3% (x,. - M, 2
types 17 o 3 a1 o) ( i J)

coefficient de corrélation r.

Sk entre les variables Xj et Xk

% (X.. - Mj) (in - Mk)

T (x.. -Mm.)2 % (x_. —IVLK)Z 12'

ki

Calculer les composantes principales de ces p variables X, défi-
nies par n observations, revient & déterminer p relations linéaires de la

forme :



VI -2

C1= %1X1+am}%+ +%JK + +ay, X +am
02 = a21 x1 T + a2p X + azo
C_ = D e + + a

p T, “pp 0

Ces nouvelles variables ayant la propriété essentielle d'&tre
orthogonales, c'est-a-dire que les coefficients de corrélation entre tous
les couples de C.P. sont nuls, la nouvelle base définie par la matrice

[a .] étant orthogonale.
€,J

En pratique, nous effectuons les calculs de composantes princi-
pales sur des variables centrées réduites, procédure qui sera justifide

dans la suite. On obtient alors

X, - M X. - M X -
Z, =a;, A 1l+a 2 24+ ... +a D MQ
1 P 12 75 1p
1 > g
P
X1 - IV[1 X -M
Z. = a R +a, R__D
2~ T21 T, 2P ¢
L p
X,1 - M1 X - M
Z =a e, +a BB
P p’ o, pp op

D X, - M.
’ .21 alj—*]?—l avec 1K 14
J

A une matrice de donnédes [X nJ correspond alors une nouvelle ma-

trice de données [an] de dimensions réduites en colonnes.

Z11 z21 ....... zq1 1
Zys Zoo weeenes zq2
avec [Z ] =
anj ... i e
z
L 1n Z2n ....... an
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Les éléments de ce tableau sont obtenus en appliquant & la matri-

ce Xpn les q premiéres relations lindaires précédentes

Les coefficients alj (pour j =1 & p) sont appelés cosinus direc-

teurs de la C.P. d'ordre 1; ils sont orthonormés

P S 1sim="
z 8y .8 .=
j= J 0w 20sim#1

Ce sont les coordonnées des vecteurs propres de la matrice des

coefficients de corrélation rjk; on les calcule en diagonalisant la matrice :

Fw r12 r13 ....... r

(1] yy e .,

...........

Les valeurs propres A, de cette matrice ne sont autres que les va-

1
riances des nouvelles variables Zl’ c'est-a~dire :

n 2
Al = i Z oz, H (1a moyenne de Z. est nulle par
n . 1i .
i= construction)
N.B. - Dans certains textes, les C.P. sont également appelées fonctions ortho-

gonales empiriques (ou naturelles).

- On peut toujours diagonaliser une matrice de coefficients de corréla-
tion, méme lorsque le nombre des variables est supérieur au nombre
d'observations (p > n), mais dans ce cas il y aura p - (n-1) valeurs

propres strictement nulles : Ap = A =0 ; ce

= A =...)\
p-1 p-2 p~n-1
qui n'est pas gfnant pour des calculs ultérieurs car on n'utilise pas
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plus des 3 & 5 premiéres composantes principales lorsque 30 < n <100.
Pour des échantillons si peu importants, il est en effet illusoire et
risqué d'attribuer une signification aux C.P. d'ordre supérieur & 5
eu égard & la dispersion d'échantillonnage de la matrice des coeffi-
cients de corrélation totale ainsi qu'au "bruit" engendré par les

erreurs de mesure sur les observations.

On trouve également des valeurs propres nulles, lorsqu'il existe une

relation fonctionnelle lindaire entre 2 ou plusieurs couples (Xj’ XK).

Dans le processus de calcul, ces vecteurs propres sont déterminés
dans 1l'ordre des valeurs propres Al décroissantes. Une propriété remarquable
des valeurs propres ainsi obtenues est que leur somme égale la dimension de

la matrice R :

A, = p (trace)

Cette relation permet de comnaltre la contribution, en variance,
de chacune des composantes principales & la variance totale du systéme 2

p dimensions.

En particulier, un des critéres permettant de choisir le nombre
de composantes "utiles" (nous verrons qu'il n'est pas suffisant et peut étre
parfois sujet & caution) consiste & éliminer les composantes Zm d'ordre
élevé (q € m g p) de telle sorte que la perte d'information soit faible par

rapport & la variance totale :

P
1y A =c¢ avec g =1%, 5% ou 10 %
P m=q+1 n

I1 est équivalent de conserver un nombre minimum de C.P. qui ma-
ximise le coefficient de corrélation multiple entre chaque variable et ces

q premiéres C.P. soit :

q minimum et R; = 2 alj Al aussi voisin de 1 que possible
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Le coefficient de corrélation entre chaque variable initiale et

la composante principale d'ordre k est en effet égal a :

2 (in - mj) Zys

i=1
P = . o 2] =%\

3 )
z (x.. - m. P z
i=t 9 i

et d'aprés la propriété d'orthogonalité des C.P., le coefficient de corré-

lation multiple entre la variable Xj et les q premiéres C.P. est obtenu par :

6.1.2 -= Définition géométrique

On peut considérer que dans l'espace & p dimensionsqui constitue
le systeme de référence initial pour le phénoméne étudié, chaque observation
ou ensemble de p valeurs xj_I est représentée par un point, par conséquent la
matrice d'observations Xpn est représentée par n points (les p axes ne consti-
tuent pas une base). Dans l'espace & n dimensions, les p vecteurs X1, oo X

de coordonnées respectives x11,..,x1n-x .X ,..,Xpn—)ne sont pas

N ST
2177’ 2n pl
orthogonaux.

Calculer la premiére C.P. revient a chercher l'axe tel que la som-
me des carrés des distances des n points & cet axe soit minimale, ou encore

que la somme des carrés des projections des points sur cet axe soit maximale.

Puis on détermine le second axe, apres projection des n points dans
un hyperplan orthogonal au premier axe, tel que la somme des carrés des dis-
tances des points-—observations & celui-ci soit minimale. Ce processus de cal-
cul se réitére p fois. Si 1l'on calcule et conserve p composantes principales,
cela revient & effectuer une rotation du systéme d'axes origine. Lorsqu'on
ne conserve que les q premieres C.P., on considére alors un nuage de n points
qui sont les projections des originaux dans un sous-espace de dimensions q.
Dans l'espace & n dimensions les vecteurs Z1,...Zp (de coordonnées Zyqreee

Z - cee = Z

n INEETRTI ) sont alors orthogonaux.

6.2 ~— CONDITIONS D'UTILISATION DE L'A.C.P.

La plupart des auteurs affirment dans les ouvrages ou articles se

nannATrtFant &8 ~ratta tenrhndiniie Alle le domaine d'1titiliaation de 1" A OP eat
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trés large - sans inconvénient - sans danger - ne nécessite pas au préalable
d'hypothéses restrictives et, de plus, que l'interprétation des résultats
n'est pas "induite" comme c'est le cas pour d'autres procédés d'analyse fac-

torielle.

S'il est vrai que les conditions de normalité ne sont pas impéra-
tives, ni méme nécessaires pour pratiquer 1'A.C.P., en particulier que la
fonction de répartition empirique des séries in (pour un j donné et 1 € i Kn)
soit gaussienne, on ne doit pas oublier que la matiére premiére de 1'A.C.P.
est la matrice des coefficients de corrélation totale entre tous les couples
(X., Xk)' C'est elle, en effet, qui apres diagonalisation permet de calculer

J
les valeurs et vecteurs propres.

Or. la valeur du coefficient de corrélation lindaire rjk’ entre X.
( . . . C
et Xk’ dépend essentiellement des couples d'observations in, 4 et en par

ticulier de la configuration de ce nuage de points dans le plan (Xj’ Xk).

En particulier, si 1l'on applique une transformation monotone aux
p variables Xj’ du type 1oge Xj ou (Xj> g on modifiera les coefficients de
corrélation rjk et, de ce fait, la structure des composantes principales.
Autre remarque importante : il n'est pas équivalent de calculer
les C.P. sur des variables centrées réduites, donc avec une matrice de cor-
rélation, ou sur des variables centrées donc avec une matrice de covariances,
lorsque égs variables Xj ont des variabilités trés différentes, lorsque par
exemple 8% = 10, car alors les premidres composantes risquent d'étre définies
uniquement par les variables Xj a fortes variances, les variables du type Xk
ayant une faible pondération, alors qu'au contraire celles-—ci conditionnent
presque totalement les composantes correspondant aux plus faibles valeurs

propres Am’ qui sont celles que l'on élimine généralement.

I1 est donc indispensable d'étre conscient de tous ces aspects et
de leurs conséquences lorsqu'on effectue une A.C.P.; cette mise en garde ne

diminue en rien le potentiel de ce puissant outil d'analyse.
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6.3 - APPLICATIONS DE L'A.C.P.

Cette technique peut &tre utilisée pour traiter des variables carac-—

risant

. un phénoméne spatial (champ de température de 1'air, précipitations, de

pressions atmosphériques, débits, etc, dans une région ou pays);

. un phénoméne temporel (chronique des débits, précipitations, températures,

pressions journalidres - hebdomadaires - décadaires en un lieu).

On peut distinguer deux aspects principaux de 1'A.C.P.
analyse descriptive (structure d'une matrice d'observation),
. analyse opérationnelle (optimisation d'un réseau de mesures, critique des

données, prévision, simulation ,...).

6.%3.1 - Analyse descriptive

Si 1l'on calcule les vecteurs propres de la matrice des coefficients
de corrélation, les relations entre C.P. et variables initiales sont de la

forme :

1Y X, .
= 3 [ (s
Z1 - alJ ( oj )

ou, en variables réduites :

Yl = e
\/ 1
On interpréte généralement la signification des coefficients de

pondération a. . pour 1 =1, 2, 3, 4, 5.

13
Lorsque l'on traite des variables Xj homogénes, représentant un
méme phénomeéne spatial, la suite des coefficients aTj est relativement
. . 14\ CL .
uniforme; dans certains cas aqj #7 (5) /2 quel que soit j. La premiere C.P.
représente alors une moyenne de variables centrées réduites, c'est un fac-

teur de taille.
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L'interprétation, recherche d'une typologie ou d'une proximité
entre stations, s'effectue principalement sur les couples de coefficients

a.. et a,. et moins fréquemment sur les couples a

23 33 43" %55

Deux modes de représentation sont utilisés pour visualiser les

résultats numériques et orienter l'analyse descriptive.

6.%3.1.1.1 - Représentation graphique en

~ On porte sur le graphique les p points (a21, a31), (a22, a32) .
(azp, a3p). On voit alors apparalitre des "nuages" de points : une typologie
sera d'autant mieux définie que les nuages de points sont bien distincts

les uns des autres; de plus la redondance, c'est-a-dire le fait que plusieurs
stations représentent la méme information, sera d'autant plus importante que

chaque nuage sera bien concentré, forte compacité interne des '"nuages".

On graphique généralement les couples de coefficients de corréla-
tion entre les C.P. et chacune des p variables soit ( P2 , p3 ) et éventuel-

lement ( p4J ), ce qui permet de tracer les ellipses de proximité des

r P
53
variables (cf représentation des rayons de bicyclette et ellipses de proxi-

mité).

Ellipse de proximité : exemple de 1'ALLIER supérieur (pluies d'octobre et

novembre en Ardéche).

n® variables /Ej =17 pBJ =T i on suppose que les variables
Z et T ont une densité de répar-
2 -.106 =039 ! tition gaussienne & 2 dimensions :
33 063 |- 143 2 _E
34 322 279 5 | £(z,1) 2
35 342 247 4 Sy Sy \1-T
56 -4T3 197 8 avec E? = _l_ [ Z Z) r
37 .476 .225 6 1-
38 .395 167 7 (____ ( (T -T }
39 .098 101 8
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les moyennes : 7 =

1 -2 1 -
; R - . 2 - _ _m)2
les variables : SZ = ; z (Zi Z) ; ST = z (Ti T)

2 (z,-z) (r.-T)
le coefficient de corrélation : r = L L

i \/z (z,-2)? = = (1,-1)7

On effectue un changement d'axes en prenant le barycentre comme origine :

1]

(z2-72) cos 8+ (T -7T) sin 6
(z -7Z) sing + (T =) cos @

@ u

v

1

9 est l'angle de l'axe U avec l'axe Z.

Pour que les nouvelles variables soient orthogonales, en exprimant
E2 en fonction de u et v d'apres les relations @) , 11 faut éliminer le ter-

me rectangle uv, donc écrire que son coefficient est nul, soit :

2r s, s
@ tg 29 = -—Z_T.
2 _ a2

Sz = Sp

(lorsque s, =8,:0= g)

Remarque : le jacobien de la transformation (D est égal & 1'unité

= 1(z,7) 4z 4T = g(u, v) du dv

Pour 1l'exemple étudié :

7 =.258 s, = .214
T = .165 , sp = 101
r = .821
tg 2941 d'ou 8 = 22°.5

T + .414 (2-2)
7 - 414 (1-T)

- les écarts types des nouvelles variables sont définis par les deux rela-

(z-7) tg 6 ou T
—(7-T) tghou Z

- 1'axe U est défini par 1'équation : T-T

- l'axe V. " " " : 2-2

tions suivantes, aisées a obtenir d'aprds @ :
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2 o2 — _ p2 2 o2 _
sg Sy = (1 r ) 87 Sp = P
2 2 - 2 2
s4u sv = sz + sT =3

cette derniére propriété résulte de 1l'invariance de la distance des points
observations au barycentre du nuage dans le changement d'axes.

sé et s; sont racines de 1l'équation :
X2 -8X+P=0

soit 8, = .23 , s, = .054

la somme des carrés de 2 variables gaussiennes centrées réduites

suit une loi du X2 & 2 degrés de liberté, soit :

0
pour p = .50 X; =1.386
= .90 = 4.605
= .99 = 9.210

Le tracé des ellipses de proximité met en évidence 1'importance
de la concentration des stations appartenant & un méme bassin, fait apparai-
tre (par la proximité ou l'intersection des ellipses associées) la redon-

dance d'un réseau de mesures couvrant plusieurs bassins

- la redondance est d'autant plus forte pour un bassin que les axes de
1'ellipse sont de faibles dimensions et égmux; une ellipse allongée signi-

fiant qu'une seule station ne suffit pas & représenter l'information ;

- le chevauchement d'ellipses signifie redondance de l'information spa-

tiale mesurde sur différents bassins ;
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- lorsqu'une grande ellipse englobe plusieurs nuages distincts, il est
préférable de refaire un tracé d'ellipses en tenant compte de ces sous-

groupes ;

- les intersections d'ellipses mettent en évidence la continuité spatiale

entre bassins ;

- dans l'analyse en C.P. des séries d'un réseau de mesures, il vaut
mieux n'utiliser qu'un nombre réduit de stations pour définir les quelques
ellipses de proximité, les stations non utilisées se distribuant au voisi-
nage des nuages avec lesquels elles ont des affinités.(On peut faire le méme
raisonnement & 3, 4, 5 dimensions, on considére alors des hyperellipsoides de
proximité).

6.3.1.1.2 - Représentation cartographique de

Sur une carte ou sont représentées les stations de mesures, on
porte la valeur des cosinus directeurs affectant chaque variable correspon-
dante, pour une méme C.P. On trace alors les lignes d'égaux coefficients
ou lignes d'isocosinus directeurs, qui sont les "lignes de force" du phéno-
méne étudié. Le graphique peut suggérer une interprétation physique de la

C.P. étudide, en s'appuyant sur la géographie, le climat, etc.

6.3.1.1.3 — Représentation graphique interprétée

On peut mettre en évidence la signification physique d'une C.P.
en représentant sur graphique cartésien les couples de valeurs (alj’ Dj>
pour j =1 & p, D, caractérisant le parametre physique que 1l'on identifie
3 1a 1%0me composante. Ainsi, dans le cas d'une A.C.P. sur des températu-
res mensuelles au cours d'une saison, et relevées dans des stations de plai-
ne et de montagne de la moitié Sud de la France, on constate qu'il y a une
corrélation étroite et non lindaire entre l'altitude et les cosinus direc-

teurs de la 22me C.P.

Cette démarche peut également suggérer une interprétation typolo-

gique.
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Ce que l'on va analyser & présent, c'est la situation des couples

de valeurs ) pour i = 1 & n observations, les indices 1 et k pre-

nant les valeurs 1,2 - 3,4 - 5,6 ... ou 2,3 - 4,5 ...

En représentant, par exemple, sur graphique cartésien tous les

couples (y1i’ y2i) valeurs des 1ére et 2éme C.P., on examinera :

- si certains points scnt voisins, donc s'il y a ressemblance de certains
individus i et si cette ressemblance se maintient pour y3i et y4i, etc, la
proximité sera d'autant meilleure et l'analyse facilité; ceci permet de car-

tographier 1l'isohyéte moyenne d'épisodes analogues en répartition spatiale ;

- si les nuages de points apparaissent plus ou moins séparés (familles
d'analogues caractérisant des états particuliers distincts du phénoméne)
plus ou moins agrégés (redondance des mesures ou fréquence d'apparition du

méme état).

On peut définir la signification physique d'une C.P. (Yl) en met-
tant en corrélation les n valeurs Y15 avec les n observations d'un phéno-

méne physique externe.

On pourra également associer tout point du plan (yli, yki)’ pour
i =1 4amn, & des valeurs (dichtomiques comme O et 1 ou continues) caracté-
risant les états d'un autre phénoméne 1ié aux valeurs des composantes, et
matérialiser la ou les frontiéres entre nuages de points de méme cote. Nous
verrons dans la suite de cette note comment quantifier cette description a

l'aide de 1l'analyse discriminante.

6.%.2 - Formalisation et exploitation numérique des résultats

de 1'A.C.P.
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On veut 4tablir une relation multilinéaire entre une variable
principale V et des variables explicatives X1’ R Xp. On dis-
pose pour cela de n observations sur ces (p+1) variabiles

4 3

V1 X1,| ......... X

v X X
n 1n pn

L /

En utilisant la méthode des moindres carrés, la détermination
des coefficients "b'" de cette relat%on (V = bO + b,1 X1 + b2 X2 + .
+ b X+ €) consiste & minimiser 2 €2 avec :
PP i=t *

X,. + b, X.. + ... + b

S <bo * b1 1i 2 721 P Xpi

i
Cette opération est toujours possible et parfaitement rigoureuse
quelle que soit l'importance des corrélations entre variables explicatives
X,. Toutefois lorsqu'on a affaire & de petits échantillons (15 g n £50),
du fait des fluctuations d'échantillonnage, des coefficients de corréla-
tion rjk entre plusieurs couples de variables [Xj’ Xk] voisins de 1 (coli—
néarité) peuvent rendre 1'estimation de certains coefficients de régres-
sion instable. Une procédure, proposée pour remédier & cet inconvénient,
consiste & orthogonaliser le systeme (Xq’ cee XP) puis & ne retenir que
les q premiéres C.P. qui expliquent entre 90 et 98 % de la variance totale;
s'il y a des colindarités, le rang de la matrice de corrélation est infé-

rieur & p, ce qui revient & éliminer les dernieres C.P.

Cette procédure a son intérét et est recommandée lorsqu'on traite
des variables X. homogénes (en ne mélangeant pas des observations de débits,
de pluies et de températures). Toutefois lorsque les variables Xj sont trop
hétérogénes, en particulier en variabilité, cette méthode est sujette 2
caution car, en éliminant les composantes ayant les plus faibles valeurs
propres, on peut se priver d'une information importante pour la prévision,

précisément située dans ces éléments.
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C'est un probléme & la mode : disposant d'un réseau de stations
de mesures trop dense et redondant, dont l'entretien est onéreux, on se

propose de "l'optimiser”.

Il faudrait préciser ce que l'on entend par "optimiser" : par
rapport & quel type d'information et selon quel critére. Il est toujours
difficile de préjuger des besoins & venir, et méme dans une situation
actuelle il est presque impossible de s'appuyer sur des considérations

exhaustives pour définir rigoureusement 1l'optimisation.

C'est pourquoi nous ne traiterons que d'un aspect limité et par-
tiel de ce probldme : rationalisation relativement & la mesure actuelle et
passée du phénomdne étudié. Un autre aspect important est celui de 1l'unité
de temps de la mesure; veut-on rationaliser par rapport & une information

moyenne annuelle — mensuelle - hebdomadaire - journaliére - horaire ... ?

I1 faut se garder d'éliminer toute redondance, car elle peut &tre
utile pour atténuer l'effet d'erreurs de mesures aléatoires; lorsqu'on
exploite les résultats de mesures d'un ensemble de stations, la redondance

permet un lissage des erreurs accidentelles.

Une forte redondance entre stations est bien mise en évidence par
les analyses graphiques 6.3.1.1.1., toutefois il est souhaitable de la com-

pléter par l'analyse cartographique 6.3.1.1.2.

Le choix des stations témoins doit satisfaire aux conditions sui-

vantes :

- bien corrélées avec la moyenne générale (bonnes corrélations avec la

premidre composante) ;

- représentatives de groupements homogénes caractéristiques de la typolo-
gie; bonne corrélation avec les 2&me et 3éme C.P., éventuellement les 4éme

et 5eme C.P. ;

- perdre le minimum d'information, c'est-a-dire que le coefficient de

corrélation multiple entre chaque station et les q premiéres composantes
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doit &tre aussi voisin de 1 que possible et, en particulier, le coefficient
de corrélation multiple de la station témoin d'un méme groupement avec les

q C.P. doit &tre le plus important parmi les stations de ce groupe ;

- conserver un minimum de redondance en retenant 2 ou 3 témoins par

groupe.

Une procédure numérique analogue a la régression descendante con-

sisterait a :

(a) - calculer les q premidres C.P. qui représentent par exemple 95 % de

la variance totale,

(b) - calculer les C.P. de toutes les associations possibles de (q—ﬁ)

stations parmi q,

(¢) - retenir le groupement des (q-1) stations dont les premidres C.P. sont

les mieux corrélées avec les C.P. de (a
y

(d) - calculer les C.P. de toutes les combinaisons de (q-2) stations prises

dans le sous-ensemble (c) de (q-1) stations,

(e) - retenir le groupement des (q—2) stations dont les premieéres C.P. sont

les mieux corrélées avec les C.P. de (a),

(f) - réitérer 1'opération avec toutes les combinaisons (g-3) parmi le grou-

pement retenu en (e).

La sélection s'arréte d'aprées 1'un ou l'autre des critéres suivants
on a fixé le nombre des stations du réseau réduit - on se fixe un riveau
minimum de corrélation entre les premiéres composantes des p stations et les

composantes de (p-k) stations.
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On dispose de n observations sur p stations et de m observations

communes (m.< n) sur une (p+1)eme station :
rop -
X1 . Xp Xp+‘\
n 11 o T
X . X X
m . Tpm p+l,m

o+ - Fomet

X . X 0
‘n . pn

! J

On calcule les q premiéres C.P. des p stations (X1, ceey Xp)

d'apres le tableau des p * n observations.

On établit la corrélation multiple entre Xp+1

tes sur la période commune (m observations); puis on applique la relation

et ces q composan-—

lindaire ainsi obtenue aux (n-m) ® p observations de la période, on obtient

az , affectées d'une marge
p+1, m+] p+1, n

ainsi une estimation des valeurs %

d'incertitude calculée.

6.3.2.3.2. - Reconstitution totale d'une série en un lieu
Pour cela, on utilisera les propriétés de la représentation carto-

graphique étudiées au paragraphe 6.3.1.1.1.

Rappelons que si 1l'on_considére un réseau de p stations et que 1l'on

calcule les g premiéres C.P.

Y 1 Ié
l T cmcm—" a .
. 1
/}\l =1 J Oj

réciproquement, on peut exprimer les variables X en fonction de Y, en trans-

posant la matrice des coefficients a, . (1'inverse d'une matrice orthogonale

13
est égale & sa transposée) :
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Ej étant une variable de moyenne nulle et d'écart type :
1
q 2 §
Oy = (- 1—21 251 A)

On cartographie donc les moyennes Mj’ les écarts types Zj, les
cosinus directeurs relatifs aux q premiéres C.P. puis l'on trace les lignes
d'égales valeurs de chacune de ces grandeurs respectivement; cette opéra-
tion nécessite une densité importante de stations et également une répar-
tition spatiale bien homogéne (équirépartition) de ces dernidres. Par inter-
polation avec les valeurs voisines on cslculera Mt, Dt’ 2y aZt’ ceey aqt
sur chacune des cartes; on pourra alors calculer les n observations de cette
station fictive X, & 1'aide du tableau des ngq valeurs des g composantes Y,

£
d'apres la relation :

q
X, =M + o, 7Z atl(VKl Yl} +o, E e,

—

1'écart type du o, % €, étant estimé par :

Ia 1égitimité de cette méthode suppose la stationnarité spatiale
des moyennes - écarts types - cosinus directeurs, qu'il n'y ait pas de dis-
continuité entre les points de mesure : l'isotropie des champs de mesures.
I1 n'est pas recommandé de reconstituer les stations qui se trouvent en

bordure de la grille.

6.3.2.4. - Critique des_données

La détection d'une ou deux valeurs trés errondes dans une série

de mesures Xj peut se faire de deux fagons
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- on considdre le tableau des cosinus directeurs relatifs & chaque com-
posante principale; si dans 1l'une des composantes les cosinus directeurs
sont faibles, sauf celui relatif & Xj ( qui peut &tre trés voisin de 1),
on identifie la station douteuse. Généralement cette station est peu cor-
rélde avec les autres et occupe une place particuliere dans les C.P. L'exa-
men comparatif de cette série avec des séries de stations voisines permet

de détecter l'erreur ;

- toutefois on peut détecter 1l'erreur en calculant les q premieres C.P
sur 1'ensemble des stations puis en reconstituant la série de chaque sta-
tion par corrélation multiple entre Xj et Yl (l =14 q) selon la procé-
dure du paragraphe 6.3.2.3.2. On teste alors 1'écart entre valeurs recons-
titudes et valeurs observées pour chaque station; par exemple si cet écart
est supérieur & 2 ou 3 fois 1l'écart type o, ® €., OD identifie la ou les

observations suspectes.

S'il s'agit d'une erreur extrémement importante dans une série,
elle se répercutera dans la plupart des valeurs correspondantes, reconsti-
tuées par l'intermédiaire des composantes (pour cette observation). Le
test des écarts détectera alors une anomalie trés significative sur un
ensemble de stations, alors que celle-ci n'est due qu'a une erreur locali-
sée dans le temps et dans l'espace. Si l'erreur est importante mais non
excessive, le test sur les écarts identifiera uniquement 1'observation et

la station en cause.

La détection d'une erreur systématique ou hétérogénéité dans une
série présente plus de difficultés. Sur le plan formel, c'est encore la ma-
trice de corrélation entre tous les couples de variables qui sera le révé-

lateur, & travers les composantes principales.

En effet, la station suspectée d'hétérogénéité aura une moins
bonne corrélation avec le reste du réseau. Cela va se traduire par de fai-
bles coefficients de corrélation entre cette série et les 1&re, 2&me, éven-
tuellement 3eme C.P. alors que la série sera fortement corrélée avec une
composante d'ordre K. On peut alors reconstituer les p séries a l'aide des

q premidres composantes, puis tracer des lignes d'écarts cumulés Z(in—Xéi)
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en fonction de i pour 1 i € n; on observera en particulier une "cassure"

ou discontinuité, pour la série qui présente une hétérogénéité.

On utilise la régression orthogonale Y = f(Xq, . Xp’ Xp+1’ ceey
Xp) mais en calculant les C.P. d'un ou plusieurs sous-ensembles de variables
homogeénes (XW’ vy Xp), (Xm, Xm+1’ e Xk), etc. Car il est évident que la

répartition spatiale d'un phénomene tel que la précipitation est mieux carac-
térisée par les 3 ou 4 premiéres C.P. d'un réseau de stations pluviométri-
ques que par une simple moyenne. D'ailleurs la corrélation multiple permet-
tra d'attribuer & chaque station des pondérations plus adaptées et plus

objectives, par l'intermédiaire des C.P.

I1 est recommandé de n'utiliser, dans de tels calculs, que 2 a 4
composantes structurées, un trop grand nombre de variables explicatives d'une
part, et l'adjoncfion de variables trop spécifiques ou éphémeres d'autre

part, risque d'aboutir & des corrélations factices.

6.3.2.5.2.- Dans le calcul de certaines régressions

multiples

Aprés une analyse en C.P. d'un champ de mesure, qui a pour effet
de réduire les dimensions et orthogonaliser les variables, on peut définir
sur ces composantes un domaine borné dans lequel les relations entre un
phénoméne & prévoir et ces variables sont approximables par des régressions
multiples (on a linéarisé le domaine d'application). Ce qui n'est pas le

cas lorsque l'on considére 1'espace complet de variation des parameétres.
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Cette technique est utilisée dans la "Reconnaissance dynamique

de la forme des situations météorologiques".

Chaque jour & O h, 1'état de l'atmosphére, sur 1'Europe et la
bordure atlantique, est caractérisé par 37 niveaux des surfaces 700 mb et
1000 mb (obtenus d'aprés les mesures de radiosondages). Un fichier ayant
été constitué pour les mois d'hiver depuis 1959, soit plus de 3 000 jour-
nées , on orthogonalise chacun de ces 2 ensembles de 37 variables pour
les réduire & six composantes principales (YK, ZK’ purK=12a6). Ce
fichier est complété par les 6 variations AZK en 24 heures des composan-
tes ZK’ ainsi que par la précipitation en 24 heures Rl (8 h - 8 h) de 33
groupements pluviométriques. Soit Yox (K =1 34 6) les valeurs caractéri-
sant la carte d'aujourd'hui, on recherche dans le fichier historique la
trentaine de situations analogues qui se trouvent dans la boule de proxi-
mité centrée sur Yog ¢ %=1 (yiK - yOK)z <d? et 1 varie de 1 & 30. Le
rayon de cette boule étant indicé 4 la distance & l'origine. On extrait
dans un fichier provisoire les valeurs Zig AEK’ Ril’ assocides a ces
analogues et 1l'on établit 1l'équation de régression multiple\/ﬁz =
;ﬂﬁK ZK + Zl}lK AZK + C1 en éliminant les variables explicatives dont le
coefficient de corrélation partiel avec V{ﬁ; n'est pas significativement
différent de 0. Puis on calcule »/%f—'= I a

01 1K %ok 1
affecté d'un intervalle de confiance proportionnel & 1'écart type 1ié de

+Z P Dy +0

la régression. Les variations de la surface 1000 mb en 24 h sont obtenues

en calculant les valeurs de C.P. z

1K de la situation du lendemain, prévue

par la Météorologie Nationale.

Comme conclusion & ce rapide inventaire, on peut faire les remar-
ques suivantes, & la suite de nombreuses applications et essais d'analyse :
lorsque 1l'on cherche a prévoir 1'écoulement pendant un intervalle de temps
donné, en plusieurs stations (usines hydroélectriques - stations limnimé-
triques) d'une méme région ou de plusieurs régions, en fonction des préci-
pitations et écoulements passés, il est préférable de mettre individuelle-
ment en corrélation les variables & prévoir avec les C.P. des événements
passés, tels que précipitations spatiales ou enneigements, plutdt que
d'associer les C.P. de 2 ensembles de mesures, car on caractérise mieux

ainsi le comportement spécifique de chaque bassin versant.
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Lorsqu'il y a forte homogénéité entre plusieurs points de mesures,
et s'il existe plusieurs ensembles de stations bien typés par un ou deux té-
moins, on pourra effectuer une prévision individuelle sur chacun de ces té-
moins puis éclater cette prévision sur toutes les stations par 1'intermé-

diaire de composantes principales.

On peut, par l'intermédiaire des C.P., évaluer la probabilité
d'occurrence d'un éveénement spatial, résultant de la conjonction d'événe-
ments ponctuels, ce qui serait impossible sur les variables initiales du

fait des intercorrélations.

6.4 - APPLICATIONS DE L'A.C.P. DANS LE DOMAINE TEMPOREL

On considére & présent des variables temporelles, c'est-a-dire
la discrétisation d'une fonction aléatoire : AW’ cee At’ ey Ap. Ce sera
le débit moyen en 24 heures de chacun des 365 jours de l'année en un lieu,
les apports des 52 semaines, les températures décadaires pendant une sai-

son, etc.

L'avantage de cette technique sur l'analyse spectrale est qu'il
est plus facile de faire abstraction de la non-stationnarité (au second
ordre) du processus, puisqu'elle est prise en compte dans les calculs de
1'A.C.P. par l'intermédiaire des moyennes - variances - coefficients de
corrélation totale entre couples At et Att K
On peut transposer au domaine temporel la plupart  des applica-

tions de 1'A.C.P. qui ont été décrites précédemment dans le domaine spatial

- analyse descriptive dans l'espace des variables, qui met éventuellement
en évidence des relations entre les observations & deux époques distinctes

de 1'année,
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- analyse dans 1l'espace des observations, qui montre 1l'analogie de sé-

quences d'événements pour 2 ou plusieurs années passées,
- critique des données,

- prévision.

La corrélation entre composantes, des apports hebdomadaires du
printemps-été pour des riviéres & alimentation nivale prédominante et les
précipitations, écoulements et températures de 1l'hiver précédent, permet
de prévoir, non seulement 1'importance de 1l'hydrogramme de fusion nivale,

mais également sa forme.
On peut proposer une "modelisation" des premi&res composantes
principales empiriques, pour lisser les dispersions d'échantillonnage des

cosinus directeurs.

Notons Dt les variables At centrédes réduites :

p D
Zy = Zay D = ti; (aK t o+ bK) D,  avec t31 (aK t + bK)x (ajt + bj)
=0siK#j
=18iK=]j
éventuellement a = ey t + bK pour 1 £ t &r

représentation en

ap =g b+ dp pour r <t ogq lignes brisées.

ay = fK t + gy Pour q <t <D

\

(un mod&le consiste a rendre nul le coefficient de t et prendre le terme
constant égal & —— ).
v
\/ P
Inversement, il est possible de calculer les variables At en fonc-

tion des 3 ou 5 premieéres C.P.

5
At=Ki Py T+ Poy + & o
on peut effectuer un lissage des coefficients ﬁKt’ pour 1 § t <p, qui mo-
dulent 1l'effet de la C.P. ZK, d'apres :

3
~ _ 2t 2t
ﬁ = ﬁ (t) = 2 (K Cos m &=—= + § sin _l._)-
Kt K =0 Km D Km D
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On établit alors une corrélation multiple entre les composantes

ZK et les précipitations et écoulements d'hiver (Ps)

b= 2B Fs T B¢ ©
le produit des matrices de coefficients ﬁKt et BKS permet d'obtenir :

AL =ZC P +C, ©)

et donc de calculer la prévision de At'

Simulation : connaissant les fonctions de répartition de ZK et €, dans @,
on peut simuler aisément des suites de A, (1<€t<p); en
utilisant la relation O on peut également effectuer une
simulation spatio-temporelle sur plusieurs bassins versants
voisins soumis au méme régime météorologique, en simulant
les composantes principales des précipitations (conérence
spatiale), puis en générant par bassin des chroniques AJC

d'aprés (3 :, la relation (@ assurant la cohérence tempo-

relle propre & chaque bassin.

(Exemple de prévision des apports hebdomadaires d'été de la

DURANCE & SERRE-PONCON).

6.5 - QUELQUES REMARQUES PRATIQUES SUR L'A.C.P.

Lorsqu'on calcule les C.P. d'un ensemble de variables représentant
un phénoméne spatial ou temporel, on a intérét & calculer les C.P. sur do-
maine spatial ou temporel plus étendu que le domaine utile, pour éliminer

les "effets de bord".

La densité spatiale ou temporelle des variables X a son importance

dans le calcul des C.P.; voici 2 exemples extrémes :

- calculer les C.P. d'un ensemble ultra redondant, la pression atmosphé-
rique mesurée toutes les minutes entre 9 h et 12 h le 10 janvier pendant n

années, ou encore les C.P. de la température moyenne de l'air en décembre,
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sur 1 km?, mesurée par une centaine de thermometres uniformément répartis
sur cette surface (colindarité + bruit = 1 composante + des composantes

bruits) ;

- il y a discontinuité, particularité locale ou instantanée, dont le
réseau de mesures ne rend pas compte, le réseau étant trop ladche; aniso-

tropie des champs de mesure.

Le nombre d'observations a également son importance : avec 30
observations, il vaut mieux s'en tenir aux 2 ou 3 premieres C.P. alors
qu'avec 1000 observations on peut calculer 8 ou 10 C.P. avec garantie de

stabilité des cosinus directeurs respectifs.

L'analyse préliminaire de la distribution empirique des obser-
vations de chaque série peut suggérer une transformation simple qui pondére

1'influence de valeurs extrémes.

I1 faut se garder des habituels pieges relatifs aux coefficients
de corrdlation simple entre variables : non lindarité - hétéroscédasticité -

hétérogénéité - points aberrants, etc.

Enfin, lorsqu'on calcule les C.P. de variables résultant de cumuls
progressifs, il y a déformation continue des cosinus directeurs et valeurs

propres correspondants.

Lorsqu'on calcule les C.P. sur plusieurs échantillons d'observations
effectuées sur le méme phénoméne, il peut arriver que pour une méme composante
il y ait inversion de signes ou qu'il y ait inversions dans la suite des com-

posantes.

6.6 - CONCLUSIONS

L'analyse en composantes principales est un outil puissant, effi-
cace et assez objectif pour traiter des tableaux de données, particuliere-

ment les mesures de phénoménes physiques homogénes.
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Elle permet une synthése et une meilleure appréhension de 1'infor-
mation (volume d'observations); elle peut également orienter la recherche
d'une typologie, aussi bien dans le domaine des variables que dans celui des

observations.

Cette méthode n'est cependant pas universelle, on ne peut en faire
une application massive et sans discernement. Ses limites sont essentielle-

ment :

-~ les corrélations totales entre variables doivent &tre lindaires ou

linéarisables par une transformation simple ;

- on ne traite qu'une partie de l'information puisque les calculs ne font
intervenir que les moments de ler ou 22me ordre (moyenne, écart type, cova-

riance) H

- elle est sensible & la dissymdtrie de la répartition en fréquence des
observations, on peut d'ailleurs s'affranchir de cet inconvénient en traitant

la matrice des coefficients de corrélation de rang ;

- on comnait assez mal la distribution d'échantillonnage des composantes

principales individuellement (cosinus directeurs et valeurs propres) ;

- de méme, on ignore l'incidence réelle des erreurs de mesures faites sur

les observations, dans le calcul des composantes principales ;

- le calcul des C.P. sur des ensembles de données hétérogénes (températu-
res et pluies par exemple) est une opération délicate et sujette & caution,
cela nécessite une certaine prudence dans l'interprétation et l'utilisation

des résultats.

Ces restrictions étant faites, les applications de 1'A.C.P. sont
nombreuses, a la fois lorsqu'on traite les mesures ponctuelles d'un phéno-
méne spatial ou la chronique des mesures, en un lieu, d'un phénoméne tempo-

rel.

Dans ce dernier cas, en particulier, cette technique parait supé-

rieure et plus prometteuse au plan opérationnel que l'analyse spectrale.

o
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Stations de radiosondage (altitude des surfaces 700 mb et 1 COC mb
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15.
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19.

®

PREVISION

NUMERIQUE DES PRECIPITATICNS

Point I

Torshaw'n

Oslo

Jokioinen

Point J

. + Stornoway

Kastrup

Valentia

Aughton

De Bilt

Emden

Lindenberg

Legionowo
Point K
Brest
Trappes
Payerne
Munich

Prague

ENE Nivicion Technicue Géngraie

20.
21.
22.
23.
24.
25.
26.
27.
28,
29.
30.
31,
32.
33.
34.
35.
36.

.

Budapest
La CbrOgne
Bordeaux
Nimes
Milan
Zagreb
Belgrade
Bucarest
Lisbonne
Madrid
Palma
Cagliari
Rome
Brindisi
Funchall
Gibraltar
Malte

Poprad Tatry
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Figure 3 VI 30

Représentation dans le plan des coefficients de
corrélation entre les 3 premidres composantes
des niveaux de la surface 700 mb, mesurés 3 O h
pendant 15 hivers et chacune des 37 stations de
radiosondage du réseau d'observations.
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Figure 4
Ellipses de proximité & 80 % établies d'apres
les coefficients de corrélation entre les 2é&éme

et 3&éme composantes principales et les 37
§ stations de radiosondage.
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Figure 5

Représentation des valeurs des composantes prin-
cipales 1 et 3 des niveaux journaliers de la
surface 700 mb en hiver de 1959 a 1973 pour les
jours sans pluieset les jours avec pluies supé-
rieures 2 25 mm sur le bassin du TARN.
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PYRENEES

Ecoulements de MAT

Naguiihes Lanoux Izourt Gnioure Caillaouas Bleu

1950 232 180 450 450 391 163
51 228 155 355 337 271 110
52 416 344 391 376 306 125
53 479 370 503 490 387 234
54 323 250 358 334 293 162
55 379 260 288 269 432 351
56 423 325 476 505 380 144
57 154 141 215 197 137 37
58 ‘ 523 . 400 567 590 516 337
59 440 340 337 364 , 318 137
1960 478 370 412 441 518 314
61 431 329 365 386 313 241
62 359 294 313 358 274 160
63 295 271 318 305 208 104
64 464 360 381 415 597 406
65 366 285 451 428 228 139
66 472 353 478 489 377 223
67 383 310 396 404 215 66
68 370 . 320 423 449 . 242 95
69 417 359 403 447 372 181
1970 334 238 393 400 197 87
71 447 370 471 459 348 170

T2 273 242 322 335 205 78
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. =0,356
=1.232
0.027
1.123
=0,600
=(,185
0.657
=2.473
2.108
=0.044
1.153
0,200
=0.474
=1.019
1.254
=0.104
0,958
-0,332
=0,065
0,482
=0,667
0,716
-1.126

e
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-0,328
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-0,269
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0,365
2.6964
=-1,000
0,648
=0.383
0.225
1.147
0.546
0.396
n,072
2.285
-1,.035
=-0.504
-1,086
=-1.,207
=0,134
=0, 937
-0.747
-0,238

y&

Compeos amley Pu,u. c.'r\al.!/;

Ya
3.17%
1.732

=1.155
=0.012
0.229
0.072
0.505
0,107
1.018
=4.5895
-0,058
=0.855
-0.807
=0,733
0,415

0.219s
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=0,9173
-3 ,37%
=-9.549

0,205
-0, 477
“u,171%

6
= {C=1

Yu Ys Ye
-1.086 0,137  0.339
0.023 =0.917 =1.070
-0.7648 =2.011  0.755
1.018 =0.951  0.657
0.468 =1.077 0.429
1.592 =0.791 =0.398
-1.343 =0,450 =1_371
=-(.,291 =0_.002 0.600
0.771 - 0.847  0.421
-1.200 =0,974 =1.825
-1.004 =0,210 =0,230
1.524 1.367 =0.564
-0.265 2,027 =0.732
0.096 0.235 2.079
-0.969 0.558 0421
1.990 =-0.013  0.859
0.752 =0.174 =0.783
-0.167 =0.355 =0.555
~G.297  1.344  0.548
“1.4R7  1.225 0.560
1.109 0,334 =1.978
0,118 =1.206  1.411
-0.450 1,057 0.574
a xL-ML} A_
X Va;
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STATIONS PLUVIOMETRIQUES "LOIRE - CEVENNES"

DOUX - EYRIEUX

I Lamastre

2 St Agreve

3 Le Cheytard

4 St Pierreville
5 Vernoux

LOIRE SUPERIEURE

6 Ste Eulalie

7 Issanlas

8 La Palisse

9 Fay - sur - Lignon
I0 Lac d'Issarleés

LOIRE MOYENNE

IT Le Monastier
I2 Sanssac 1'Eglise
I3 Fix St Geneys
I4 Le Puy Chadrac
I5 Chomelix

[6 Retournaguet
I7 Pont de Lignon
18 Moulas

I9 Tarentaise

20 Mazet St Voy
21 Tence

22 Versilhac

ARDECHE - CHASSEZAC

23 Mayres

24 Montpezat

25 Antraigues

26 Loubaresse

27 Valgorge

28 Villefort

29 Vals - - les Bains
30 Aubenas

31 Joyeuse

Division Technique Générale.

ALLIER SUPERIEUR

32 St Etienne de Lugdarés
33 Langogne

34 St Sauveur de Ginestoux
35 Gandrieu

36 Monistrol d'Allder

37 Saugues

38 Faulhac en Margeride

39 Les Uffernets

CEZE

40 Malons

41 Genolhac

42 Collet de Deéze

43 St Maurice de Ventalon

44 St Etienne - vallée frangaise
45 St André de Valborgne

HERAULT - ORRB

46 Mont Aigoual
47 Puechagut

TARN

48 Pont de Montvert
49 Barre de Cévennes
50 Florac

5I Meyrueis

Lot

52 Chanac

53 Montmirat

54 Mende

55 Bagnols les Bains
56 Le Bleymard
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—
. Exemple d'application correspondant aux calculs du 8 ITII analyse R
en composantes principales des apports hebdomadaires des 26 semaines
d'été (ter mars-31 aolt) de la DURANCE 4 SERRE-PONCON.
# cosinus directeurs empiriques obtenus avec le programme MUVAR
- relations linésires permettant d'obtenir les cosinus directeurs
rectifids.
'3
e
30
P a ¥ o »p W @
8 % 5 g ol d
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VII - FONCTIONS DE TRANSFERT LINEAIRES

7.1 - Fonction de transfert pluie-débit sur des bassins versants de
1l'ordre de 1 000 kif -

Cette méthode a été mise au point pour calculer en temps réel des
prévisions de débits de crue d'aprés les pluies mesurées, pour des bassins

versants de l'ordre du millier de kilom®tres carrés (100=BV=<3000 km?2).

Contrairement au processus classique qui consiste d'abord & réduire la

pluie brute en pluie efficace puis ensuite & identifier la réponse impulsionnelle

(cf DE MARSILY 1971, SINGH 1977, et al ...), démarche qui fait implicitement

dépendre le second résultat du premier, nous commencons par déterminer la fonction

de transfert linéaire pluie efficace-débit ainsi que la pluie efficace, puis
ensuite, on cherche a définir la fonction d'abattement & appliquer & la pluie
brute pour obtenir cette pluie efficace : lLes deux opérations étant alors indé-
pendantes.

Partant d'une relation linéaire entre variation de débit et pluies
brutes concomitante et antérieures, nous proposons une méthode itérative de

P )

régression multiple permettant de calculer la pluie efficace (P1, P -

2’ b
ainsi que la fonction de transfert "moyenne" discrétisée (A1, A2, ey AK)

donnant 1'hydrogramme de ruissellement (D1, D2, ooy D )

X n
D=2 A Pj_i+1 ; (1<ji<n)
J i=1

Les calculs sont effectués sur les différences premiéres, pour 1l'in-
tervalle de temps unitaire choisi, de :

- chaque hydrogramme observé, éQj = Qj -Q = q., on court-circuite ainsi

j=1
la délicate opération de séparation des iydrogrammes (de base, hypodermi-
qué ...), la variation unitaire de ces derniers est en effet négligeable
devant AQJ, sauf pour des crues complexes (en séquence) H

- la fonction de transfert; soit Aﬁi = Ai - Ai—1 = ai (avec a, = A1)’ on note-
ra DPFT la différence premisre de la fonction de transfert.

L'avantage de cette procédure de calcul en différences premidres

est double

- diminution importante de la corrélation entre débits successifs, ainsi qu'en-
tre '"variables" de la DPFT inversée (déconvolution), on assure ainsi une
meilleure stabilité des coefficients de régression partielle, ce qui édvite
d'imposer des contraintes a ces coefficients, donc d'alourdir la procédure
de calcul ;

- permet de s'affranchir d'éventuelles dérives de la courbe de tarage.

Toutefois 1l'inconvénient de la méthode est sa sgrande sensibilité au

[W]

bruit, erreurs de mesures cur les d4bi<s cu précipitaticns, par exemple.



Cette note décrit plus en détail le processus de calcul de la fonction
de transfert (discrétisée) pluie efficace - débit de ruissellement de surface
d'aprés les mesures de pluies brutes et de débits.

On dispose de N épisodes pluie-crue (15 ¢ N g 60) en limitant les cas
de crues complexes (crues consécutives rapprochées). On choisira une durée cons-
tante pour 1'ensemble des hydrogrammes, soit n+1 débits depuis 1'origine de cha-
que épisode pluvieux (non comme contrainte, mais facilité de calcul). Les épiso-
des de précipitation peuvent avoir une longueur variable, mais une durée minimale
commune.

Notations -

-~ Variation de débit entre les instants j-1 et j (pas de temps unitaire
0< j<n) pour la 1iéme crue (1 ¢ 1 g N) :
Q

- - 3
I P R S (n/e)
- Précipitation observée (brute), cumulée pendant 1'intervalle [ j-1, j] pour

la 1ieéme crye (moyenne arithmétique simple ou pondérée de plusieurs sta-
tions :

Rj,l (mm)

- Précipitation efficace, ou nette, pour le ruissellement de surface pendant
l'intervalle [j-1, j1:

P, .
1,3

- = Coefficients de la Fonction de Transfert (FT ) appliqués aux précipita-
tions efficaces pour calculer le débit de ruissellement direct & 1l'instant j

A1, AZ’ ceey Ai’ oo Am avec

m
Q. = 3

17k A Pidienl

- Coefficients de la Différence Premieére de la Fonction de Transfert appli-
qués aux précipitations efficaces pour calculer la variation de débit entre
j-1 et j pour la 11€M€ crye :

3y 8ps ... @

m
Py = A =8y
avec " _
M oE ey
m
et q. = T
b7 500% Tilan
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Si 1'on note nj la longueur de chaque hydrogramme (avec le pas de
temps unitaire choisi), mj la longueur de chaque épisode de pluie efficace
et r la longueur de la fonction de transfert (nj = mj + r - 1), 1'écriture
la plus générale exprimant la relation linéaire pluie efficace-débit est la
suivante :

i I T
q1’1 P1,1 0 0 0 ceeesee O a1’1
92,1 P21 P11 0 0 : 2y

: P31 P21 P11 0 : :
N
: 0 :

A 0 eeeeeen R o P 5

I Qn1,1‘ nﬁ,1- _r11
1,2 2,1 1,2[
q 0 Cevecsoecencccsenssnnsssatnas P a

o nz’z— o m2,1- .r22.-
9,N Pan 0 0 0 AN

: Pon  Pin O
q 0 © ¢ 000000000600660600660606606600660Hs P =]
nN’N mN’N rr[]\]

L. . L 4 L .

Avec les mesures disponibles, on fait 1'hypothése d'une fonction de
transfert moyenne (a1, CPYRRER ar).

Pour la commodité des calculs, on prend des épisodes pluvieux de
longueur constante m, donc des hydrogrammes de longueur constante n; ce qui
conduit & tronquer certains épisodes de précipitations ou avoir des O pour
les derniéres pluies efficaces d'autres épisodes. On peut alors écrire la
relation linéaire pluie efficace-débit sous les deux formes équivalentes.

eed/ves
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5.

B q1,2 ay 0 0 dececoons 0 P1’2
q2,2 a, 3 0 cecocoon 0 P2,2
;‘ = a, N 3y Pm,2
qn,2 0 P a.
[qZ]n,1 = [A]n’m * [P2]

q1,N a, 0 0 cocesos 0 P1,N
q2,N a, a, 0 coconse 0 P2,N

5 = e, cocecescscoscscsesncensone 3y P m, N
qn,N 0 Geesoscsssecscssscsesacaa a. |

[qN]n 1 = [A]n,m * [PN]m,1

?

On a prolongé la fonction de transfert der &4 n (car n > r) puisque en fait,
a, tend asymptotiquement vers 0.

En utilisant alternativement les formulations (:) et (:) , et en ini-
tialisant le calcul avec les pluies brutes (observées), on va calculer une esti-
mation de la DPFT [a] ainsi que des pluies efficaces [P] selon le procédé décrit
dans la suite.

On calcule une premiére estimation des coefficients (a}) de la
DPFT tronquée & K, lorsque la différence seconde s'annule (1 g i ¢ K < r), par
la méthode des moindres carrés appliquée au systéme de relation linéaire sui-
vant :

ced/ves
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9,1 R1,1 0 0 toeveveeene O ax e§’1
* *
92,1 R, R, 0 0 a3 ®3,1
q 3 ) :
n,1 = Rn,1 ccccececessccccscases Hn K+1,1 2. e:’1
: *
q1,2 R192 0 0 ° €172
a*
. K
: Ro Rz O
qn,z Rn,z ® 2 06 ® OO0 00O 0 60000 S ES R“n—K+1’2 e:’z
*
q'l,N R’I,N 0 tiveeeeensoncensses O e’l,N
: foon Rayn 0
*
L n,N Rn,N cecececsessscnscnsas Rn-K+1,N ‘ €N

soit en écriture matricielle :

Calnn,q = DRIk ™ 1% 0y g +De®1ny g
e étant 1l'écart résiduel entre la variation observée de débit et la variation
calculée par une combinaison linéaire des précipitations concomitantes et anté-
rieures; on calcule [a] par la méthode des moindres carrés, en résolvant

§ [e*" %] = 0,
§ [a]

Ayant obtenu cette estimation des K premiérs coefficients a¥*, on extra-
pole cette suite pour i > K, en effectuant un lissage exponentiel sur”les coeffi-
cients A¥ de la FT pour obtenir A; = Ay exp \[-d (K-1)1 pour i > K. On calcule

alors, crue par crue, les corrections [e] & appliquer aux précipitations brutes
[R] pour obtenir une premiére estimation des pluies efficaces correspondantes

(u 1 = [Rl] + [e;*] avec u >0 (1g1¢N).

On utilise la formulation <:> , par exemple pour la premiére crue :

o - o

9,1 ay 0 0 .......0 R'l,’l +ej’"1 o;)le’1
92,1 a3 aj 0 0 R2,1 + e§’1 @5,1
R$’1 +e;ﬁ’1 + :
QI'],1 a; a%:‘n-m+1 @?16,1




7.

Smt[%J :[A*]n,;;[Rl+ei‘]m’1 ﬁeﬁnﬂ
ot [@] est un bruit aldatoire.

Soit encore Esfjn’1 = [A*]n,m * [ei‘]m,1 + [@i*]n’1

=1 o r pe oD - =3 -
* *
ou e¥’1 a? 0 N 0 e1’1 61’1
* * : *
32’1 aE aj 0 0 : 92’1
: i eccecsccscecscscscsoocscesoos oo ex + E
g : i m,1J E
e:_@‘ 1 ax ax¥ :
? ] n n-m+1 | 0% 4|
== 2 - ’

On obtient les valeurs des coefficients [e*] pour 1 § 1 § m et ainsi une
premiére estimation des pluies efficaces [u¥*] . Ces valeurs vont servir a calcu-
ler une nouvelle estimation de la DPFT, par~1l'intermédiaire de la formulation
soit :

F L N

- *
falon, 1 = TN,k
puis 1'on calcule une nouvelle série de corrections [e**]pour chaque crue et en
utilisant la formulation <§9 s ce qui permet d'obtenir“une nouvelle estimation
des pluies efficaces :

[uf*] = [uf] + [ef*] avec tout élément u** 30,

COMMENTAIRES -

19/~ Trois itérations suffisent en moyenne a obtenir un coefficient de corré-
lation, entre variations de débits observéeset variations calculées par combi-
naison linéaire des pluies efficaces estimées, compris entre 0.90 et 0.98.

Si ce n'est pas le cas, par exemple aprés 3 itérations ce coefficient
de corrélation multiple ne dépasse pas 0.80, cela provient généralement d'un ou
deux épisodes de crue dus & une configuration spatiale particuliére des averses,
dont le calcul par régression est inconsistant (voir analyse des résidus e**
correspondants), on supprime ces crues de 1'échantillon et 1'on reprend les
calculs au début.

2°/- 11 est préférable de calculer la pluie efficace P, qui servira a caler
la relation non linéaire P = f(R), en déconvoluant directement les hydrogrammes
de crue, aprés avoir obtenu une estimation stable des coefficients [a] de la
DPFT; pour cela on utilisera la formulation (II

[qlhu1 =[Ahum*ml]m1 +£el%u1

on calculera les coefficients P; de cette régression multilindaire, par la
méthode des moindres carrés appliquée & chaque crue séparément.

veoleus
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39/~ Eviter de prendre des séquences de crues consécutives trop rapprochées
car on introduit un biais dans les variations de débits. La figure suivante
illustre cet inconvénient.

qd

AQi+1 (Qj+1 - Qj) = variation apparente de débit

Mi,q = (@4, - Q) ) = variation réelle de débit

AQ ) = variation apparente de débit

j+2 = (Qyup = Q4

J+1) + (Qj+1 - Qj+2) = variation réelle
4°/- Enfin, la DPFT ou la FT que l'on calcule ainsi n'est qu'une forme
moyenne de réponse du bassin versant aux précipitations, sauf rares cas : elle
résulte généralement de la composition de deux, trois ou plusieurs fonctions de
transfert propres aux sous-bassins versants homogénes qui composent la mosaique

du bassin versant principal.

Si 1'échantillon des averses utilisées pour le calage de la DPFT com-
prend uniquement des épisodes pluvieux répartis réguligrement sur tout le bassin
versant, on aura une bonne définition des pluies efficaces et cela facilitera
1'ajustement de la fonction d'abattement P =?§%; (1'homogénéité spatiale des

4
pluies sera également une garantie de bonnes prévisions de débit en exploitation
opérationnelle) .

Par contre si 1'échantillon comprend des épisodes partiellement locali-
sés a un sous-bassin, on risque de converger trés lentement dans le calcul de la
DPFT. De plus, pour obtenir les pluies efficaces on déconvolue chaque hydrogramme
avec une fonction de transfert moyenne, alors qu'il aurait été nécessaire de le

convoluer avec la fonction de transfert du sous-bassin concerné : on obtient ainsi

des pluies efficaces factices, qui rendront difficile tout calage objectif de la
fonction d'abattement.

Or, compte tenu de la modestie des échantillons pluie-crue pour la
plupart des bassins, on ne peut faire une sélection basée sur 1'homogénéité des
pluies spatiales, par conséquent tous les échantillons pluie-brute-pluie effica-
ce déconvoluée sont affectés d'un bruit non négligeable, qui rend illusoire la
recherche d'une méthode numérique sophistiquée pour caler les paramétres de la
fonction d'abattement de 1'ensemble du bassin. De plus on peut imaginer que
chaque sous-bassin posséde non seulement sa FT propre, mais également une rela-
tion P = R? spécifique.

R+b

Ces remarques montrent également qu'il est illusoire de rechercher
des pondérations sophistiqués pour calculer la "vraie" lame d'eau Tegue par le
bassin total.



Dans ce paragraphe, nous présentons un tableau récapitulatif et
condensé des essais effectuds pour établir une relation non lindaire simple
entre la précipitation efficace ou nette calculde par la méthode précédente
et la précipitation brute.

Bien que l'imagination des hydrologues soit fertile dans ce domaine,

nous nous sommes limités & deux relations simples :

R.
=R, - - - =Y
Pj = Rj b (1 exp ( b)) &
-1
P.=R. -bR., (R, +1 4
5 =R, 5 (Ry + ) ®

(en notant Rj la pluie observée et Pj la pluie efficace pendant 1'intervalle
unitaire j-1, j).

Ainsi, dans les fortes valeurs, la pluie efficace tend a égaler la
pluie brute moins la rétention du bassin versant "b".

Ce terme b, témoin de la rétention, n'est d'ailleurs pas une cons-
tante, c'est le produit d'un parametre saisonnier (fonction de la date dans
1'amée) et d'une fonction inverse des pluies et (ou) débits antérieurs :

b=c (H (Q,R))‘1 G

Pour caractériser 1'évolution de 1'état de saturation des couches supé-

rieures du sol du bassin versant pendant la crue, par une approche empirique, nous

avons essayé diverses définitions de la fonction H(Q,R) :

- indice des débits antérieurs :
- po_ _ B
2(Q) = (IQ,AJ._J = (x Qo+ A) IQAJ._z) avec 0g AL
et .8gBN
- indice des précipitations antérieures

H(R) = IRAJ. = eRj + (1-8) IRAJ._ avec .05€6<.50

1
- indices combinés des précipitations et débits antérieurs
B(Q,R) = (104, )P = (1Ra,)
1-P
)

a(Q,R) x IRA, avec 0gpg

J

Pour chaque essai, on a calculé et graphiqué la corrélation entre

P
Q= (QJ._1

la pluie efficace déduite des débits, et la pluie efficace reconstitude
d'aprés les relations (3 et @ .

Ce travail a été effectué pour plusieurs bassins versants de géomor—
phologie variée et d'alimentation trés différente (pluies d'origine océanique,

pluies d'origine méditerranéenne).

.9
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En définitive, nous avons retenu le modele suivant :
p.=R2 (R, + b)7
J J J

b=c(a (a,)) -

g (Q,R) = IQAJ.__1 pour le Massif Central, Forez, Morvan

Qg (Qj_1)1—P IRAj pour 1'Ardéche, les Cévennes, les
Alpes du Sud
Pour le calage du parametre saisonnier ¢, on a d'abord pris une
valeur constante pour 1'année, puis, en établissant la distribution statisti-
que des écarts entre variation de débit observée et variation calculée, mois

par mois, on a ajusté par moindres carrés la fonction :

cos 47t 4 3, sin 2mt + 4_ sin 4t

=b + b, cos 2ZE + b
¢ T 0y CO8 o T % O e T 365 2 365

0

avec le jour calendaire 1g tg365

CALCUL DU DEBIT Qj A L'INSTANT j

On peut l'obtenir de deux fagons :

- soit en calculant la variation du débit en 4 heures entre j-1 et j, avec

les coefficients a; de la DPFT que l'on applique aux pluies efficaces anté-
rieures, & laquelle on rajoute le débit & 1l'instant Q. ,
n
Q. =Q. , +2 a, P. .
3 31 5 =1 i “j-i+1
- soit par calcul direct du débit en appliquant la FT aux pluies efficaces,
pendant toute la crue, en partant d'un état initial de débit, avec possi-

bilité de ne pas se recaler sur les débits réels en cours de crue :
n

Q. = IQA +T AP 1'index des débits antérieurs traduit
J j=1 ‘1 i j=-i+t la saturation progressive des couches
= profondes.

EXEMPLES D'APPLICATION

— Le BUECH aux CHAMBONS (BV 723 km?) (figure 1)

Cet affluent, en rive droite de la DURANCE, a un bassin versant
situé entre 700 et 2700 m d'altitude; les précipitations importantes qu'il
recoit sont essentiellement d'origine méditerranéenne. La moyenne arithméti-
que de trois stations (Serre - Lus-la-Croix-Haute - St—Etienne—en—Dévoluy)
représente la précipitation regue par le bassin. L'intervalle de temps uni-
taire est 2 h pour les pluies et débits; une trentaine d'épisodes précipita-

tion - crue ont été dépouillds pour le calage et 6 ont servi & tester le modele.



Trois itérations ont été nécessaires pour établir une DPFT stable
(Tableau I, figure 2).
La relation entre pluie brute et pluie efficace se calcule d'aprés

=1
P. = R? (R. b
J J ( J - )
avec : c(QO IRAJ.)"1 de mai & novembre
b = .
c (QO Qj—1)_1/2 (IRAJ.)'1 en hiver

e}
]

86 (9 - 3.8 cos 2L - 47t _ 5.4 sin 278 — sin 478 (m
( cos == cos =5e 5.1 sin 5= sin 365) (Figure 8)

la fonction de transfert entre pluie efficace en millimetres et dé-
bits en m’/s est définie dans le Tableau II. On a représenté graphiquement

un exemple d'application de cette procédure pour la crue-test du 8 décembre

1977, la plus importante observée depuis 20 ans (figures 3 et 4) ainsi que la

crue du 12 octobre 1976 (fig. 5 & 6).

On note que la dispersion des écarts variation observée - variation
ajustée (figure 5@ est moindre en cumulant 2 intervalles de temps unitaires

il y a effet de lissage.
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LE BUECH AUX CHAMBONS
Crue-test du 8 décembre 1977
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EPTSODE PLUIE-CRUE (BUECH aux CHAMBONS)
du 8 décembre 1977
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LE BUECH AUX CHAMBONS

mm crue du 12 octobre 1976
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igure 7 — Le Buéch aux Chambons. Crues des 4/5/77, 11/2/79, 10/1)70, 8/12/77. Variations de débits en 2 heures.
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7.2 - Fonction de transfert débit-débit ou propagation de crues

(Dans les applications suivantes, les gpérateurs lindaires utilisés
sont des approximations suffisantes).

On considére le cas le plus simple ol 1'on dispose de 3 stations de
mesure des. débits sur une méme riviere (A-B-C, d'amont en aval) avec enregistrement
continu des niveaux (limnigrammes, cassettes magnétiques) et 1'on suppose que les
apports intermédiaires entre A et B, B et C, sont peu importants ou négligeables.
On peut établir la fonction de transfert lindaire des débits entre A et B, B et C,
A et C par un calcul de régression multiple entre la variation de débit pendant
1'unité de temps choisie (1, 2, 3, 4, 5, 6 heures) & la station aval et les varia-
tions de débit concomitantes et decalees dans le temps a la station amont, d'aprés
quelques mois d'enregistrement :

AV Kk gAM
8O = 5Ip 8y AQp ;g

E.

AV _ AV AV
My = 8y - G

AM
= Ghe

Ehz écart entre la variation de débit observée et la variation calculée
d'aprés la relation multilinéaire.

avec :

AM _ _AM C
AQh = Qh

NN AN AN AN AN

Rappelons que les coefficients a; se calculent par la méthode des

n
moindres carrés, en minimisanth§1 Elhicw étant le nombre total d'observations.

Le test deStudentappliqué aux coefficients a. ou le test de Fisher ap-

pliqué aux coefficients de corrélation partielle entre Qev et Qh 1+1’ permet d'éli-

miner les variations dont 1l'influence n'est pas significativement différente de
zéro ; on s'appuiera aussi sur la continuité des coefficients.
La présentation des calculs sous forme matricielle s'effectue ainsi :

- on notera AOa = qﬁ, AQE = qﬁ, AQE = qg

B_k A 3
9h=iZ1 Pi 9h_ir *E

r Y 7 N -
B A b
K K -1 % 1
B A A
She A Y 92 || b2
) 1)
1] = " " 11 b
] ' " 1] " 13
1] " " " [
B A A A '
9 9 Ih-1 Ah-K+1 '
1
L L.bl,
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(4]

de méme on obtiendrait :

c 1 B c
9 = Fa1 % Yhoie1t Ep

d'apres
r - I )
B - [¢]
9 9 911 9 1
C B
41 941 9 v 9 ¢2
= \ . 3 (2)
C B B B .
9 9 9h-1 . 9h-141
1 1]
r F P - - = = = = = - = = 1] Cq]
Ic B B
qn qn qn-1 n-1+1
& 4 N
Bl 1 .
[«¢] =[] <]
A c
on obtiendrait de méme qh E qh—i+14'Eh
*y .
[ ¢ A A ' .
9 9 9-1 " 9 1
L] . . o a2
- 1
A '
9% 9 9h-1 ‘ﬂ\ m+1 (3)
. 1
1 R ' ) 13
. | o
C A A m
i an { ah . . . . . qn—m+1J

soit [q¢]= [a*]E ]

On peut calculer les coefficients a; a l'aide des coefficients b et Css

pour cela on prendra 1'égalité des durées des FT , K=l=m,certains coefflclents pou-
vant etre nuls.

La relation (1) peut s'écrire sous une autre forme :



0 0
NmD-—-=m

- -

o)
W= = = = =X W-

n

-

Soit

r
by 0 0
b, b, 0 . <0
bebyq * ' b0« .+ 0
0 b, b0 © =+ O
oo by * - - b

[qB] = [B ] [qA]

De méme on peut exprimer la relation (2) par :

C
L)

92

n

4
soit :

Cq 0 0 » 0
02 ¢ 0 ' . . 0
ek kg ot 0 0
0 ?K. v e e e 010 . 0
0 CK N « . C1

SASIG

0
J W = - =X W=~

0

) .
Fou
b Y

On peut de méme représenter la relation (3) par :

0O = = = = =

Soit :

»

3,0 0 0 ° ' o 0
a, a1 0 0 . . v 0
83 a2 a1 0 . . 0
ay aK_1 . a a10 - 0
O ak ° . » a10 . 0
0 e . . O a a

.
fq1
A
92

1

'
'
1
'
{
'
'
'
'
v
'
A
n

L

4

(4)

(5)

(6)



On voit d'apres (4) et (5) que
[ - [l

Soit en comparant avec (6) :

(] =[elle]

Soit :
N
( b1c1 0
) b1c2 + b2c1 b1c1
L A ] = b103 + bzc2 + b3c1 b1cz+b2c1 b1c1 0 (70
b’IcK + bZCK—'l + o 4 acedp bK ¢, . 0.
L A
T Ar . -
d'ou : a1 = b1 c1
a, = b102 + bzc1
a, = b,lc3 + bzc2 + b3t:1
aK = b1CK + bch + bch_1—---+ ch1

Remarque 1 : Tous les calculs précédents sont effectués dans 1'hypothese ol les
coefficients des fonctions de transfert sont indépendants de 1'im-
portance du débit. Ce qui semble le cas pour les crues non exception-
nelles, Dans certains cas, il pourra cependant &tre utile de calculer
les fonctions de transfert par classes de débit pour s'assurer soit de
1'invariance de la fonction de transfert, soit de sa déformation en
fonction de 1l'importance des débits

a; = constante ou a, = f(Q)

Remarque 2 : On peut envisager de calculer, d'aprés la relation (7), une fonction
de transfert sans passer par les relations (1), (2), (3).
En effet, supposons que A et C soient 3 égale distance de B et les
trongons de riviére homogénes :

- si 1l'on connait les bi’ sachant que bi= cjs ON peut calculer les a;

2
a; = b1, a, = 2 b1b2
.- si l'on ne connait que les a; on peut calculer bi(bi = Ci) d'apreés :

2

a,] = b,] RN N b,l‘,‘_-: fa_{
_a
a 2
2 T a2y g
as = 2 b1b3 + b2 - b3 = Qg | =
( 461) 2V

Remarque 3 : On peut évidemment généraliser les calculs précédents, lorsqu'il y a
plusieurs affluents amonts :

AV AM1 AM2 A
A Qh = Zai1 AQh~i+1 + Zaiz AQh_i+1 + esooe +Ehv



TABLEAU I

Fonctions de transfert pour calculer
le débit horaire a LR 49 (Meylawn)

Fonctions de transfert pour calculer le débit horaire

34 GRENOBLE (Marius Gontard)

i

9h

I
h-2
Iy 97

TRT T QL2TA9T T U0 16817 16,7
28 1 0.6745  0.6685 53,3
FRY G273 3 716467

oo
a

- ON

~N o~

..Re BRUT =

(
)

Cr

GRENOBLE
L R49

A

0.8136  F.

Q
=
1 S
WAV

‘“824BRUT

= 0.6971  F
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7.3 - Composition de la relation pluie efficace-débit et de la relation de

propagation -

En fait, la propagation fait partie intégrante de la relation pluie
nette-débit, quel que soit le type de bassin, mais on ne sait généralement pas
1'identifier.

Cependant nous nous proposons d'illustrer sur deux exemples fictifs la
conjugaison d'une transformation pluie nette-débit avec le transfert débit-débit.

Soit QA les débits engendrés par les pluies efficaces P & 1'éxutoire A
d'un petit bassin versant (BV1) circulaire et & forte pente et @B les débits ré-
sultants de la propagation entre A et B.

En variations unitaires :

qj = Qj - Qj-1’ on aura les relations suivantes
A_om b
9 7121 % Tyein
B K A
.= I
97151 559 joiw

Seit :.700, .187, .067, .027, .012, .006 les coefficients de la fonction de
transfert pluie-débit et .1, .7, .2 les coefficients de la fonction de transfert
débit-débit.

On peut donc écrire, sous forme matricielle, cet exemple :

qﬁ .700 0 0 0 o ||,
A
92 -.513 .700 0 ' P,
o -.120 -.513 .700 ' Py
' -.040 -120  -.513 v '
1)
' -.015 ~.040 -.120 '
' ~.006 -.015  -.040 '
' 0 -.006  -.015 ' Py
' 0 0 -.006 '
' 0 0 0 '
q?'] ] ] 1

st + (2] o] ]



et a4

911

soit : _qB]

En effectuant le produit des deux matrices de
qu = [_B ][/—\][P]soit
s
3

.0700.

B
a1

ws]

92

@

93

'
'
!
1
'
!
'
t
1
'
1
1
1
1
!
1
B
1

911

9
Soit également q? = X

.4387

-.23M

-.1906
-.0535

-.0191

-.0040
0
0

i=1

-.0072

C.
1

0

.0700

L4397

-.2311
-.1906
-.0535
-.191

-.0072
~-.0040

0

P j-ist

.0700

4397
-.231
-.1906
-.0595
-.0191
-.0072

-.0040

L]
i

.25.

) G | (2)

991

coefficients, on obtient :

.. o[ ]e,
.1 lP,
P3

' (3)
1)
1
1
1]
]
1]
Pq




.26,

De méme considérons un second bassin versant (BV2) contigu au précédent
et ayant la méme fonction de transfert pluie efficace-débit que

mais dont la fonction de transfert
du débit entre C et D est différente

D m C
.= 2 d.
U7 im % 9

Considérons 3 cas de figure pour les coefficients di :

dyy dy, dy dy,  dg, dg, do, dg
* 15, 40, .25 .15 .05 0 0 O
*% 0, .15, .40, .25, .15, .05, 0, O
*%k 0, 0, .15, .40, .25, .15,.05,0

En effectuant les m@mes calculs que précédemment (1), (2), (3) pour cha-
cune de ces hypothéses, on obtient 1es D P F T qui permettent de calculer le débit
au point D en fonction des pluies efficaces sur le BV2, et par conséquent les coef-
ficients des F.T suivantes :

(4) = .1050, .3081, .2599, .1826, .0924, .0319, .0137, .008
(5) ** 0, .1050, .3081, .2599, .1826, .0924, .0319, .0137, .008

(6) #**x 0, 0, .1050, .3081, .2599, .1826, .0924, .0319, .0137, .008

Si 1'on compose chacune de ces fonctions de transfert avec celle obtenue
pour le BV1 au point B, on obtient la fonction de transfert pluie net-débit au point
E confluent des deux rivieres BV1 + BV2 :
(7) * .1750, .8168, .5375, .2696, .1259, .0463, .0209, .0110, .006
(8) %= ,0700, .6137, .5857, .3469, .2161, .1068, .0391, .0167, .008, .004
(9) **x 0700, .5087, .2776, .1920, .3416, .2743, .1898, .0954, .0319, .0137,.008,.0
A 1l'aide de cet exemple nous allons mettre en évidence les erreurs que l'on
commet sur le calcul de la plus efficace, lorsqu'on déconvolue un hydrogramme avec une
fonction de transfert qui n'est pas correcte (avec méme rendement de pluie brute).
On considére une pluie efficace de 10 mm pendant un intervalle de temps uni-

taire correspondant a une pluie brute de 50 mm et les répartitions spatiales suivantes

/e



'27.

— elle n'affecte que le bassin BV1 et génére en E la crue de ruissellement
.70, 5.087, 2.776, .870, .335, .144, .072, .030,
si 1'on déconvolue avec la D P F T correspondant au cas (7), on obtient les pluies
efficaces :

P1 2 =0, F’3 = 0, P4 =.1, P5= 3
si 1'on déconvolue avec 1aDPFT correspondant au cas (8) on obtient les pluies

efficaces :
S~

= 6.7, P

P1 = 8.7, P2 =0, P3 = .2, P4 =0, Py = .6
si l'on déconvolue avec la D P F T correspondant au cas (9) on obtient les pluies
efficaces :

P, = 10.2, P, = 0, P, = O, P4 =0, P. = 1,5
le cadrage ée la pluie efficacé est correc mais 1'intensité peut étre sous-estimée.

—elle n'affecte que le bassin BV2 et génére en E la crue de ruissellement (
@, 1.05, 3.081,.2.599, 1.826, .924, .319, .137, .08, .06

si 1l'on déconvolue avec la D P F T correspondant au cas (8) on obtient les pluies
efficaces :

ﬁ1 = 0, ﬁz =3.2, ﬁ3 = 2.3, ﬁa =2.3,P.=1.6

—elle n'affecte que le bassin BV2 et génére en E la crue de ruissellement(6
o, 0, 1.05, 3.081, 2.599, 1.826, .924, .319, .137, .08, .06

si 1'on déconvolue avec la D P F T correspondant & (9) on obtient les pluies efficaces

P, =0, P =0, P, = 3.9, 64 =41, B, = 2.1

1 2 3 5

On remarque que pour les deux derniers cas de figures, si la somme des
pluies efficaces est a peu prés égale 3 10 mm, les répartitions sont treés différentes
de 1'épisode réel :

P1 = 10, P2 =0, P, =0, P4 =0, P. =0

3 5

Ces exemples mettent en évidence la difficulté que 1'on rencontre pour
caler la relation pluie brute!pluie efficace, puisque généralement on identifie
une fonction de transfert pluie-efficace-débit moyenne pour un bassin versant sans
pouvoir désagréger en sous bassins ayant chacun leur propre fonction de transfert
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FONCTIONS DE TRANSFERT PLUIE EFFICACE-DEBIT







